
Radiation Processes in
High Energy Astrophysics

A Physical Approach with Applications

• Fundamentals

• Thomson Scattering

• Bremsstrahlung

• Synchrotron Radiation

• Inverse Compton Scattering

• Synchro-Compton Radiation

• Relativistic Beaming

• Particle Acceleration

1



Basic Radiation Concepts

Much of what we need to understand radiation processes in X-ray and γ-ray astronomy
can be derived using classical electrodynamics and central to that development is the
physics of the radiation of accelerated charged particles. The central relation is the
radiation loss rate of an accelerated charged particle in the non-relativistic limit

−
(
dE

dt

)

rad
=

|p̈|2
6πε0c3

=
q2|r̈|2
6πε0c3

. (1)

p = qr is the dipole moment of the accelerated electron with respect to some origin.
This formula is very closely related to the radiation rate of a dipole radio antenna and so
is often referred to as the radiation loss rate for dipole radiation. Note that I will use SI
units in all the derivations, although it will be necessary to convert the results into the
conventional units used in X-ray and γ-ray astronomy when they are confronted with
observations. Thus, I will normally use metres, kilograms, teslas and so on.
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The radiation of an accelerated charged particle
J.J. Thomson’s treatment (1906, 1907)

Consider a charge q stationary at the origin O of
some inertial frame of reference S at time t = 0.
The charge then suffers a small acceleration to
velocity ∆v in the short time interval ∆t. After a
time t, we can distinguish between the field
configuration inside and outside a sphere of
radius r = ct centred on the origin of S. Outside
this sphere, the field lines do not yet know that
the charge has moved away from the origin and
so the field lines are radial, centred on O. Inside
this sphere, the field lines are radial about the
origin of the frame of reference centred on the
moving charge. Between these two regions,
there is a thin shell of thickness c∆t in which
we join up corresponding electric field lines.
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Radiation of an
accelerated charged

particle (2)

There must be a component of the electric field
in the iθ direction. This ‘pulse’ of
electromagnetic field is propagated away from
the charge at the speed of light and is the
energy loss of the accelerated charged particle.

The increment in velocity ∆v is very small,
∆v ¿ c, and therefore it can be assumed that
the field lines are radial at t = 0 and also at
time t in the frame of reference S.

Consider a small cone of electric field lines at
angle θ with respect to the acceleration vector of
the charge at t = 0 and at some later time t

when the charge is moving at a constant velocity
∆v. We join up electric field lines through the
thin shell of thickness cdt as shown in the
diagram.
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The radiation of an accelerated charged particle (3)

The strength of the Eθ component of the field is given by number of field lines per unit
area in the iθ direction. From the geometry of the diagram, the Eθ field component is
given by the relative sizes of the sides of the rectangle ABCD, that is

Eθ/Er = ∆v t sin θ/c∆t. (2)

Er is given by Coulomb’s law,

Er = q/4πε0r2 where r = ct, (3)

and so

Eθ =
q(∆v/∆t) sin θ

4πε0c2r
. (4)

∆v/∆t is the acceleration r̈ of the charge and hence

Eθ =
qr̈ sin θ

4πε0c2r
. (5)
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The radiation of an accelerated charged particle (4)

Notice that the radial component of the field decreases as r−2, according to Coulomb’s
law, but the field in the pulse decreases only as r−1 because the field lines become
more and more stretched in the Eθ-direction, as can be seen from (2). Alternatively we
can write p = qr, where p is the dipole moment of the charge with respect to some
origin, and hence

Eθ =
p̈ sin θ

4πε0c2r
. (6)

This is a pulse of electromagnetic radiation and hence the energy flow per unit area per
second at distance r is given by the Poynting vector E ×H = E2/Z0, where
Z0 = (µ0/ε0)

1/2 is the impedance of free space. The rate loss of energy through the
solid angle dΩ at distance r from the charge is therefore

−
(
dE

dt

)

rad
dΩ =

|p̈|2 sin2 θ

16π2Z0ε20c4r2
r2dΩ =

|p̈|2 sin2 θ

16π2ε0c3
dΩ. (7)
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The radiation of an accelerated charged particle (5)

To find the total radiation rate, we integrate over all solid angles, that is, we integrate
over θ with respect to the direction of the acceleration. Integrating over solid angle
means integrating over dΩ = 2π sin θ dθ and so

−
(
dE

dt

)

rad
=

∫ π

0

|p̈|2 sin2 θ

16π2ε0c3
2π sin θ dθ. (8)

We find the key result

−
(
dE

dt

)

rad
=

|p̈|2
6πε0c3

=
q2|r̈|2
6πε0c3

. (9)

This result is sometimes called Larmor’s formula – precisely the same result comes out
of the full theory. These formulae embody the three essential properties of the radiation
of an accelerated charged particle.
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The Properties of Dipole Radiation

−
(
dE

dt

)

rad
=

q2|r̈|2
6πε0c3

.

1. The total radiation rate is given by Larmor’s formula.
The acceleration is the proper acceleration of the
particle and the loss rate is measured in its
instantaneous rest frame.

2. The polar diagram of the radiation is of dipolar form,
that is, the electric field strength varies as sin θ and
the power radiated per unit solid angle varies as
sin2 θ, where θ is the angle with respect to the
acceleration vector of the particle. Notice that there
is no radiation along the acceleration vector and the
field strength is greatest at right angles to the
acceleration vector.

3. The radiation is polarised with the electric field
vector lying in the direction of the acceleration
vector of the particle, as projected onto a sphere at
distance r from the charged particle.
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Radiation of Accelerated Electron
Improved Version

See High Energy Astrophysics,3rd edition, Section 6.2.3, for details.

• Write down Maxwell’s equations in free space.

• Introduce the scalar and vector potentials and φ and A respectively.

• Select the Lorentz gauge so that the wave equations for φ and A have the same
structure with source terms associated with charges and currents respectively.

• Solve for A and then select the solutions for E and B which fall off as 1/r.

• This gets us back to

Eθ =
p̈ sin θ

4πε0c2r
.

• Proceed as before.
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Example - Thomson Scattering

Thomson scattering is the scattering of
electromagnetic waves by free electrons in the
classical limit. Thomson first published the
formula for the Thomson cross-section in 1906
in connection with the scattering of X-rays.
We seek the formula describing the scattering of
a beam of radiation incident upon a stationary
electron. We assume that the beam of incident
radiation propagates in the positive z-direction.
Without loss of generality, we arrange the
geometry of the scattering so that the scattering
angle α lies in the x− z plane. In the case of
unpolarised radiation, we resolve the electric
field strength into components of equal intensity
in the ix and iy directions.
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Thomson Scattering

The electric fields experienced by the electron in the x and y directions,
Ex = Ex0 exp(iωt) and Ey = Ey0 exp(iωt) respectively, cause the electron to
oscillate and the accelerations in these directions are:

r̈x = eEx/me r̈y = eEy/me. (10)

We can therefore enter these accelerations into the radiation formula (9) which shows
the angular dependance of the emitted radiation upon the polar angle θ. Let us treat the
x-acceleration first. In this case, we can use the formula (9) directly with the
substitution α = π/2− θ. Therefore, the intensity of radiation scattered through angle
θ into the solid angle dΩ is

−
(
dE

dt

)

x
dΩ =

e2|r̈x|2 sin2 θ

16π2ε0c3
dΩ =

e4|Ex|2
16π2m2

eε0c3
cos2 αdΩ. (11)
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Thomson Scattering

We have to take time averages of E2
x and we find that E2

x = E2
x0/2, where Ex0 is the

maximum field strength of the wave. We sum over all waves contributing to the
Ex-component of radiation and express the result in terms of the incident energy per
unit area upon the electron. The latter is given by Poynting’s theorem,
Sx = (E ×H) = cε0E2

xiz. Again, we take time averages and find that the
contribution to the intensity in the direction α from the x-component of the acceleration
is Sx =

∑
i cε0E2

x0/2. Therefore

−
(
dE

dt

)

x
dΩ =

e4 cos2 α

16π2m2
eε0c3

∑

i

E2
x dΩ =

e4 cos2 α

16π2m2
eε20c4

Sx dΩ. (12)
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Thomson Scattering

Now let us look at the scattering of the Ey-component of the incident field. From the
geometry of the previous diagram, it can be seen that the radiation in the x− z plane
from the acceleration of the electron in the y-direction corresponds to scattering at
θ = 90◦ and so the scattered intensity in the α-direction is

−
(
dE

dt

)

y
dΩ =

e4

16π2m2
eε20c4

Sy dΩ. (13)

The total scattered radiation into dΩ is the sum of these components (notice that we
add the intensities of the two independent field components).

−
(
dE

dt

)
dΩ =

e4

16π2m2
eε20c4

(1 + cos2 α)
S

2
dΩ (14)

where S = Sx + Sy and Sx = Sy for unpolarised radiation. We now express the
scattered intensity in terms of a differential scattering cross-section dσT in the following
way. We define the scattered intensity in direction α by the following relation

dσT(α)

dΩ
=

energy radiated per unit time per unit solid angle
incident energy per unit time per unit area

. (15)
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Thomson Scattering

Since the total incident energy is S, the differential cross-section for Thomson
scattering is

dσT(α) =
e4

16π2ε20m2
ec4

(1 + cos2 α)

2
dΩ. (16)

In terms of the classical electron radius re = e2/4πε0mec2, this can be expressed

dσT =
r2e
2

(1 + cos2 α) dΩ. (17)

To find the total cross-section, we integrate over all angles α,

σT =
∫ π

0

r2e
2

(1 + cos2 α) 2π sinαdα =
8π

3
r2e =

e4

6πε20m2
ec4

. (18)

σT = 6.653× 10−29 m2. (19)

This is Thomson’s famous result for the total cross-section for scattering by stationary
free electrons and is justly referred to as the Thomson cross-section.
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Thomson Scattering

• The scattering is symmetric with respect to the scattering of angle α. Thus as
much radiation is scattered backwards as forwards.

• Another useful calculation is the scattering cross-section for 100% polarised
emission. We can work this out by integrating the scattered intensity (11) over all
angles.

−
(
dE

dt

)

x
=

e2|r̈x|2
16π2ε0c3

∫
sin2 θ 2π sin θ dθ =

(
e4

6πε20m2
ec4

)
Sx. (20)

We find the same total cross-section for scattering as before because it does not
matter how the electron is forced to oscillate. The only important quantity is the
total intensity incident upon it and it does not matter how anisotropic the radiation
is. This result can be written in terms to the energy density of radiation urad in
which the electron is located,

urad =
∑

i

ui =
∑

i

Si/c, (21)

and hence

−(dE/dt) = σTcurad. (22)
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• Thomson scattering is one of the most important processes which impedes the
escape of photons from any region. We write down the expression for the energy
scattered by the electron in terms of the number density N of photons of frequency
ν so that

−d(Nhν)

dt
= σTcNhν. (23)

There is no change of energy of the photons in the scattering process and so, if
there are Ne electrons per unit volume, the number density of photons decreases
exponentially with distance

−dN

dt
= σTcNeN − dN

dx
= σTNeN

N = N0 exp
(
−

∫
σTNe dx

)
. (24)

Thus, the optical depth of the medium to Thomson scattering is

τ =
∫

σTNe dx. (25)
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• In this process, the photons are scattered in random directions and so they perform
a random walk, each step corresponding to the mean free path λT of the photon
through the electron gas where λT = (σTNe)−1.

• A distinctive feature of the process is that the scattered radiation is polarised, even
if the incident beam of the radiation is unpolarised. This can be understood
intuitively because all the E-vectors of the unpolarised beam lie in the x− y plane.
Therefore, in the case of observing the electron precisely in the x− y plane, the
scattered radiation is 100% polarised. On the other hand, if we look along the
z-direction, we observe unpolarised radiation. If we define the degree of
polarisation as,

Π =
Imax − Imin

Imax + Imin
, (26)

and so by a simple calculation the fractional polarisation of the radiation is

Π =
1− cos2 α

1 + cos2 α
. (27)

This is therefore a means of producing polarised radiation from an initially
unpolarised beam.

17



A useful relativistic invariant

The energy loss rate by radiation dE/dt is a Lorentz invariant between inertial frames.

Expert version. The total energy emitted in the form of radiation is the ‘time’ component
of the momentum four-vector [E/c, p] and dt is the time component of the
displacement four-vector [dt,dr]. Therefore, both the energy dE and the time interval
dt transform in the same way between inertial frames of reference and so their ratio
dE/dt is also an invariant.

Gentler version. In the instantaneous rest frame of the accelerated charged particle,
dipole radiation is emitted with zero net momentum, as may be seen from the polar
diagram of dipole radiation. Therefore its four-momentum can be written [dE′/c,0].
This radiation is emitted in the interval of proper time dt′ which has four vector [dt′,0].
We may now use the inverse Lorentz transformation to relate dE′ and dt′ to dE and dt.

dE = γ dE′ dt = γ dt′ , (28)

and hence

dE

dt
=

dE′

dt′
. (29)
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Radiation of Accelerated Relativistic Electron

We can derive from this result the radiation rate as observed by the external observer
who measures the velocity and acceleration of the electron to be a and v respectively,
the proper acceleration measured in the instantaneous rest frame of the electron being
a0. Then, from the above results,

dE

dt
=

dE′

dt′
=

e2|a0|2
6πε0c3

. (30)

To relate a0, a and v, it is simplest to equate the norms of the four-accelerations of the
accelerated electron in the frames S and S′. I leave it as an exercise to the reader to
show that

a2
0 = γ4

[
a2 + γ2

(
v · a

c

)2
]

(31)

and so
(
dE

dt

)

in S
=

e2γ4

6πε0c3

[
a2 + γ2

(
v · a

c

)2
]

. (32)
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Radiation of Accelerated Relativistic Electron (2)

Another useful exercise is to resolve a parallel and perpendicular to v so that

a = a‖i‖ + a⊥i⊥ (33)

and then to show that the radiation rate is
(
dE

dt

)

in S
=

e2γ4

6πε0c3

(
|a⊥|2 + γ2|a‖|2

)
. (34)

I have shown how these relations are obtained in HEA3. This is a useful expression for
obtaining the loss rate due to synchrotron radiation very quickly (see later).
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Parseval’s theorem and the spectral distribution
of the radiation of an accelerated electron

We need to be able to decompose the radiation field of the electron into its spectral
components. Parseval’s theorem provides an elegant method of relating the dynamical
history of the particle to its radiation spectrum. We introduce the Fourier transform of
the acceleration of the particle through the Fourier transform pair, which I write in
symmetrical form:

v̇(t) =
1

(2π)1/2

∫ ∞
−∞

v̇(ω) exp(−iωt) dω (35)

v̇(ω) =
1

(2π)1/2

∫ ∞
−∞

v̇(t) exp(iωt) dt. (36)

According to Parseval’s theorem, v̇(ω) and v̇(t) are related by the following integrals:
∫ ∞
−∞

|v̇(ω)|2 dω =
∫ ∞
−∞

|v̇(t)|2 dt. (37)

This is proved in all textbooks on Fourier anlaysis.
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Parseval’s Theorem

We can therefore apply this relation to the energy radiated by a particle which has an
acceleration history v̇(t),

∫ ∞
−∞

dE

dt
=

∫ ∞
−∞

e2

6πε0c3
|v̇(t)|2 dt =

∫ ∞
−∞

e2

6πε0c3
|v̇(ω)|2 dω. (38)

Now, what we really want is
∫∞
0 . . .dω rather than

∫∞−∞ . . .dω. Since the acceleration is
a real function, another theorem in Fourier analysis tells us that

∫ ∞
0
|v̇(ω)|2 dω =

∫ 0

−∞
|v̇(ω)|2 dω (39)

and hence we find

Total emitted radiation =
∫ ∞
0

I(ω) dω =
∫ ∞
0

e2

3πε0c3
|v̇(ω)|2 dω. (40)
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Parseval’s Theorem

Therefore

I(ω) =
e2

3πε0c3
|v̇(ω)|2. (41)

Note that this is the total energy per unit bandwidth emitted throughout the period
during which the particle is accelerated. For a distribution of particles, this result must
be integrated over all the particles contributing to the radiation at frequency ω.

This is also a very good result which often gives physical insight into the shape of the
spectrum of emitted radiation.
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Bremsstrahlung
Bremsstrahlung is the radiation associated with the acceleration of electrons in the
electrostatic fields of ions and the nuclei of atoms. In X-ray and γ-ray astronomy, the
most important cases are those in which bremmstrahlung is emitted by very hot
plasmas at T ≥ 106 K, at which temperatures the hydrogen and helium atoms are fully
ionised. We use the tools already introduced to derive classically the expressions for
the bremsstrahlung emissivity of a hot plasma.

Virgo Cluster in X-rays (ROSAT) Coma Cluster in X-rays (ROSAT)
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Encounters between Charged Particles

The charge of the high energy
particle is ze and its mass M .

Let us first study the ‘collision’ of a high energy
proton or nucleus with the electrons of a fully
ionised plasma. It is assumed that the nucleus is
undeviated in the encounter with the electron; b,
the distance of closest approach of the particle
to the electron, is called the collision parameter
of the interaction.

The total momentum impulse given to the
electron in the encounter is

∫
F dt. By

symmetry, the forces parallel to the line of flight
of the high energy particle cancel out and so we
need only work out the component of force
perpendicular to the line of flight.

F⊥ =
ze2

4πε0r2
sin θ ; dt =

dx

v
. (42)
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Encounters between Charged Particles

Changing variables to θ, b/x = tan θ, r = b/ sin θ and therefore

dx = (−b/ sin2 θ) dθ . (43)

v is effectively constant and therefore
∫ ∞
−∞

F⊥ dt = −
∫ π

0

ze2

4πε0b2
sin2 θ

b sin θ

v sin2 θ
dθ = − ze2

4πε0bv

∫ π

0
sin θ dθ (44)

Therefore

momentum impulse p =
ze2

2πε0bv
(45)

and the kinetic energy transferred to the electron is

p2

2me
=

z2e4

8π2ε20b2v2me
= energy lost by high energy particle. (46)
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Encounters between Charged Particles

We want the average energy loss per unit length and
so we need the number of collisions with collision
parameters in the range b to b + db and integrate over
collision parameters. The total energy loss of the high
energy particle, −dE, is:

(number of electrons in volume 2πbdb dx)

× (energy loss per interaction)

=
∫ bmax

bmin

Ne 2πbdb
z2e4

8π2ε20b2v2me
dx

where Ne is the number density of electrons. I have
included limits bmax and bmin to the range of collision
parameters in this integral. Then,

−dE

dx
=

z2e4Ne

4πε20v2me
ln

(
bmax

bmin

)
. (47)

This process is closely related to the ionisation losses
which we will meet again.

27



Gaunt Factors

Notice how the logarithmic dependence upon bmax/bmin comes about. The closer the
encounter, the greater the momentum impulse, p ∝ b−2. There are, however, more
electrons at large distances (∝ bdb) and hence, when we integrate, we obtain only a
logarithmic dependence of the energy loss rate upon the range of collision parameters.

Why introduce the limits bmax and bmin?

The reason is that the proper sum is very much more complicated and would take
account of the acceleration of the electron by the high energy particle and include a
proper quantum mechanical treatment of the interaction. Our approximate methods
give rather good answers, however, because the limits bmax and bmin only appear
inside the logarithm and hence need not be known very precisely.

This is the simplest example of the type of calculation which needs to be carried out in
working out energy transfers and accelerations of electrons and protons in fully ionised
plasmas. The logarithmic term ln(bmax/bmin) appears in the guise of what are often
referred to as Gaunt factors and care has to be taken to use the correct values of bmax

and bmin in different physical conditions. Similar forms of Gaunt factor appear in
working out the spectrum of bremsstrahlung and the electrical conductivity of a plasma.

28



Spectrum and Energy Loss Rate of Bremsstrahlung
In the classical limit, bremsstrahlung is the emission of an electron accelerated in an
electrostatic encounter with a nucleus. Electrons lose more energy in electron-electron
collisions, but these do not result in the emission of dipole radiation since there is no
net electric dipole moment associated with these encounters. Hence, the calculation

• Work out an expression for the acceleration of an electron in the electrostatic field
of the nucleus. The roles of the particles in the calculation above are reversed – the
electron is moving at a high speed past the stationary nucleus.

• Fourier transform of the acceleration of the electron and use Parseval’s theorem to
work out the spectrum of the emitted radiation.

• Integrate this result over all collision parameters and worry about suitable limits for
bmax and bmin.

• In the case in which the electron is relativistic, transform back into the laboratory
frame of reference.

• For a Maxwellian gas, integrate over the Maxwell distribtion.

• For a non-thermal distribution, integrate over the velocity or energy distribution.

29



Outline Calculation

Both the relativistic and non-relativistic cases
begin in the same way and so work out both
cases simultaneously. The accelerations along
the trajectory of the electron, a‖, and
perpendicular to it, a⊥, in its rest-frame are
given by

a‖ = v̇x = −eEx

me
=

γZe2vt

4πε0me[b2 + (γvt)2]3/2

a⊥ = v̇z = −eEz

me
=

γZe2b

4πε0me[b2 + (γvt)2]3/2

where Ze is the charge of the nucleus (see
HEA3).
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Outline Calculation

The radiation spectrum of the electron in an encounter with a charged nucleus is then

I(ω) =
e2

3πε0c3

[
|a‖(ω)|2 + |a⊥(ω)|2

]

=
Z2e6

24π4ε30c3m2
e

ω2

γ2v2

[
1

γ2
K2

0

(
ωb

γv

)
+ K2

1

(
ωb

γv

)]
(48)

where K0 and K1 are modified Bessel functions of order zero and one. This is the
intensity spectrum which results from a single encounter between an electron and a
nucleus with collision parameter b.
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The Results

• The impulse perpendicular to the direction of travel contributes the greater
intensity, even in the non-relativistic case γ = 1.

• The perpendicular component results in significant radiation at low frequencies.

• The spectrum is flat because the acceleration perpendicular to the line of flight is a
brief impulse. The Fourier transform of a delta function is a flat spectrum.

• The turn-over corresponds roughly to the frequency which is the inverse of the
duration of the collision.
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Bremsstrahlung

Thus, at high frequencies, there is an exponential cut-off to the spectrum

I(ω) =
Z2e6

48π3ε30c3m2
eγv3

[
1

γ2
+ 1

]
exp

(
−2ωb

γv

)
. (49)

The exponential cut-off tells us that there is little power emitted at frequencies greater
than ω ≈ γv/b.

The low frequency spectrum has the form

I(ω) =
Z2e6

24π4ε30c3m2
e

1

b2v2
= K . (50)

To an excellent approximation, the low frequency spectrum is flat up to frequency
ω = γv/b, above which the spectrum falls off exponentially.
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Bremsstrahlung

Finally, we integrate over all collision parameters which contribute to the radiation at
frequency ω. If the electron is moving relativistically, the number density of nuclei it
observes is enhanced by a factor γ because of relativistic length contraction. Hence, in
the moving frame of the electron, N ′ = γN where N is the number density of nuclei in
the laboratory frame of reference. The number of encounters per second is N ′v and
since, properly speaking, all parameters are measured in the rest frame of the electron,
let us add superscript dashes to all the relevant parameters. The radiation spectrum in
frame of the electron is therefore

I(ω′) =
∫ b′max

b′min

2πb′γNvK′ db′ (51)

=
Z2e6γN

12π3ε30c3m2
e

1

v
ln

(
b′max

b′min

)
. (52)
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Non-relativistic and Thermal Bremsstrahlung

First, we evaluate the total energy loss rate by bremsstrahlung of a high energy but
non-relativistic electron. We neglect the relativistic correction factors and hence obtain
the low frequency radiation spectrum

I(ω) =
Z2e6N

12π3ε30c3m2
e

1

v
lnΛ (53)

where Λ = bmax/bmin. We have to make the correct choice of limiting collision
parameters bmax and bmin.

For bmax, we note that we should only integrate out to those values of b for which
ωb/v = 1. For larger values of b, the radiation at frequency ω lies on the exponential
tail of the spectrum and we obtain a negligible contribution to the intensity.

For bmin, at high velocities, v ≥ (Z/137)c, the quantum restriction, bmin ≈ h̄/2mev, is
applicable and can be derived from Heisenberg’s uncertainty principle (see HEA3).
This is the appropriate limit to describe, for example, the X-ray bremsstrahlung of hot
intergalactic gas in clusters of galaxies. Thus, for high velocities, Λ = 2mev2/h̄ω.
There is, as usual, a cut-off at high frequencies ω ≥ v/b.
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The Full Answer

Let us compare our result with the full answer which was derived by Bethe and Heitler
using a full quantum mechanical treatment of the radiation process. The electron
cannot give up more than its total kinetic energy in the radiation process and so no
photons are radiated with energies greater than ε = h̄ω = 1

2mev2.

The intensity of radiation from a single electron of energy E = 1
2mev2 in the

non-relativistic limit is

I(ω) =
8

3
Z2αr2e

mec2

E
vN ln

[
1 + (1− ε/E)1/2

1− (1− ε/E)1/2

]
(54)

where α = e2/4πh̄ε0c ≈ 1/137 is the fine structure constant and re = e2/4πε0mec2

is the classical electron radius. The constant in front of the logarithm in this expression
is exactly the same as that in (53). In addition, in the limit of low energies ε ¿ E, the
term inside the logarithm reduces to 4E/ε.
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Thermal Bremsstrahlung

In order to work out the bremsstrahlung, or free-free emission, of a gas at temperature
T , we integrate the expression (53) over a Maxwellian distribution of electron velocities

Ne(v) dv = 4πNe

(
me

2πkT

)3/2
v2 exp

(
mev2

2kT

)
dv. (55)

The algebra can become somewhat cumbersome at this stage. We can find the correct
order-of-magnitude answer if we write 1

2mev2 = 3
2kT in expression (53). Then, the

emissivity of a plasma having electron density Ne becomes in the low frequency limit,

I(ω) ≈ Z2e6NNe

12
√

3π3ε30c3m2
e

(
me

kT

)1/2
g(ω, T ) (56)

where g(ω, T ) is a Gaunt factor, corresponding to ln Λ, but now integrated over velocity.

At high frequencies, the spectrum of thermal bremsstrahlung cuts off exponentially as
exp(− h̄ω/kT ), reflecting the population of electrons in the high energy tail of a
Maxwellian distribution at energies h̄ω À kT .
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Thermal Bremsstrahlung

The total energy loss rate of the plasma may be found by integrating the spectral
emissivity over all frequencies. In practice, because of the exponential cut-off, we find
the correct functional form by integrating (56) from 0 to ω = kT/h̄, that is,

−(dE/dt) = (constant)Z2T1/2gNNe (57)

where ḡ is a frequency averaged Gaunt factor. Detailed calculations give the following
answers:

κν =
1

3π2

(
π

6

)1/2 Z2e6

ε30c3m2
e

(
me

kT

)1/2
g(ν, T )NNe exp

(
−hν

kT

)
(58)

= 6.8× 10−51Z2T−1/2NNe g(ν, T ) exp(−hν/kT )Wm−3Hz−1 (59)

where the number densities of electrons Ne and of nuclei N are given in particles per
cubic metre. At frequencies h̄ω ¿ kT , the Gaunt factor has only a logarithmic
dependence on frequency.
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Thermal Bremsstrahlung

A suitable form for X-ray wavelengths is:

X-ray g(ν, T ) =

√
3

π
ln

(
kT

hν

)
, (60)

The functional forms of the logarithmic term can be readily derived from the the above
considerations.

The total loss rate of the plasma is

−
(
dE

dt

)

brems
= 1.435× 10−40Z2T1/2gNNe Wm−3. (61)

Detailed calculations show that the frequency averaged Gaunt factor ḡ lies in the range
1.1− 1.5 and a good approximation is ḡ = 1.2. A compilation of a large number of
useful Gaunt factors for a wide range of physical conditions is given by Karzas and
Latter (1961).
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Example - X-ray Emission of Clusters of Galaxies

XMM-Newton X-ray Image of
the cluster of galaxies Abell
1413 (Pratt and Arnaud 2002).

If p is the pressure of the gas and % its density,
both of which vary with position within the
cluster, the requirement of hydrostatic
equilibrium is

dp

dr
= −GM(≤ r)%

r2
. (62)

The pressure is related to the local gas density %

and temperature T by the perfect gas law

p =
%kT

µmH
, (63)

where mH is the mass of the hydrogen atom
and µ is the mean molecular weight of the gas.
For a fully ionised gas with the standard cosmic
abundance of the elements, a suitable value is
µ = 0.6.
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Example - X-ray Emission of Clusters of Galaxies

X-ray spectrum in fifth annulus

Average X-ray emissivity as a
function of radius

Differentiating with respect to r and substituting,
we find

%kT

µmH

(
1

%

d%

dr
+

1

T

dT

dr

)
= −GM(≤ r)%

r2
. (64)

Reorganising,

M(≤ r) = − kTr2

GµmH

[
d(log %)

dr
+

d(logT )

dr

]
.

(65)

Thus, by measuring the temperature of the gas
as a function of radius and the bremsstrahlung
emissivity of the gas, the mass within radius r

can be found.
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The Mass Distribution in Abell 1413

Both the temperature distribution and number density of electrons need to be
deprojected to find the spatial distribution as a function of radius. This is carried through
the pair of Abel integrals,

Iν(a) =
1

2π

∫ ∞
a

κν(r)r

(r2 − a2)1/2
dr κν(r) =

4

r

d

dr

∫ ∞
r

Iν(a)a

(a2 − r2)1/2
da . (66)
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Non-relativistic Bremsstrahlung Losses

To find the energy loss rate of a single high energy electron, we integrate (52) over all
frequencies. In practice, this means integrating from 0 to ωmax where ωmax

corresponds to the cut-off, bmin ≈ h̄/2mev. This angular frequency is approximately

ωmax = 2π/τ ∼ 2πv/bmin ≈ 4πmev
2/h̄, (67)

that is, to order of magnitude h̄ω ≈ 1
2mev2. This is just the kinetic energy of the

electron and is obviously the maximum amount of energy which can be lost in a single
encounter with the nucleus. We should therefore integrate (52) from ω = 0 to
ωmax ≈ meνv2/2 h̄ and thus,

−
(
dE

dt

)

brems
≈

∫ ωmax

0

Z2e6N

12π3ε30c3m2
e

1

v
lnΛdω ≈ Z2e6Nv

24π3ε30c3me h̄
lnΛ (68)

Note that the total energy loss rate of the electron is proportional to v, that is, to the
square root of the kinetic energy E: −dE/dt ∝ E1/2.

In practical applications of this formula, it is necessary to integrate over the energy
distribution of the particles.
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Relativistic Bremsstrahlung Losses

The formulae we have derived are correct in the rest frame of the electron, namely,

I(ω′) =
∫ b′max

b′min

2πb′(γN)vK′ db′ (69)

where we have written the number density of nuclei γN because of length contraction.
Since the collision parameters b′ are perpendicular to the direction of motion, it follows
that, since y = y′, the same collision parameters appropriate for the laboratory frame
of reference can be used. I have given a discussion of the relevant collision parameters
in HEA3 and I will not repeat that discussion here. It suffices to note that we can write
the emission spectrum in the frame of the electron

I(ω′) =
Z2e6Nγ

12π3ε30c3m2
e

1

v
lnΛ. (70)

Notice that there is at best a very weak dependence upon frequency ω and so we again
obtain the characteristic flat bremsstrahlung intensity spectrum.
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Relativistic Bremsstrahlung Losses

On transforming this spectrum to the laboratory frame of reference, we note that the
bandwidth changes as ∆ω = γ∆ω′ and so the spectrum becomes

I(ω) =
Z2e6N

12π3ε30c3m2
e

1

v
lnΛ (71)

where the integral extends up to energies E = h̄ω = γmec2, where γ À 1. Thus, the
rate of loss of energy of the relativistic electron is

−
(
dE

dt

)

rel
=

∫ E/h̄

0
I(ω) dω =

Z2e6Nḡ

12π3ε30c4 h̄
E. (72)

Notice that the dependence of the energy loss rate changes from E1/2 to E between
the non-relativistic and relativistic cases.
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The Galactic Gamma-ray Emission

The diagram shows the γ-ray spectrum of our
Galaxy as well as theoretical estimates of the
emission by Stecker (1977). At energies ε > 70

MeV, the dominant emission mechanism is the
decay of neutral pions created in collisions
between cosmic rays and the nuclei of atoms
and molecules of the interstellar gas. This
spectrum peaks at about 70 MeV and so there
must be another mechanism which contributes
at the lower energies. Relativistic
bremsstrahlung may be the dominant source of
emission at these energies. The spectrum
labelled ‘brems’ is derived from an extrapolation
of the relativistic electron spectrum in our
Galaxy to energies 1 < E < 1000 MeV.
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