A General Noncommutative Limit Theorem.

T.C. Dorlas
University of Wales, Swansea
Department of Mathematics
Singleton Park, Swansea SA2 8PP, U.K.
Email: T.C.Dorlas@swansea.ac.uk

and

K. Nemmanee
Department of Mathematics, Faculty of Sciences
Chulalongkorn University
Bangkok, Thailand.
Email: tnattana@netserv.chula.ac.th

Abstract. One of the authors recently proved two non-commutative versions of the central limit theorem. Both of these theorems concerned a pair of creation and annihilation operators. The first theorem is a statement about the limit of the expectation value of a function of the scaled difference of the corresponding number operators with respect to an \(n \)-particle state as \(n \) tends to infinity. Here we extend this theorem to the case of an arbitrary (but fixed) number of creation and annihilation operators. We also formulate a conjecture extending the second theorem about the limit of the trace of a certain exponential of operators over the \(n \)-particle subspace as \(n \) tends to infinity.

1. Definitions and results

In [1] one of the authors proved two non-commutative analogues of the central limit theorem. Both of these theorems concerned a pair of independent bosonic creation and annihilation operators \(a_\pm^* \) and \(a_\pm \). The first of these theorems was introduced as a preliminary to the second, more difficult theorem but is of some interest itself. Here we generalise the first theorem to a system of \(r+1 \) bosonic spin operators \(a_0, \ldots, a_r \) and \(a_0^*, \ldots, a_r^* \). They satisfy the usual commutation relations

\[
[a_i, a_j^*] = \delta_{i,j} \quad (i, j = 0, 1, \ldots, r).
\]

(1.1)
We consider a general transformation of these operators to a new set of creation and annihilation operators c_0, \ldots, c_r given by

$$c_k = \sum_{j=0}^{r} O_{k,j} a_j \quad (k = 0, 1, \ldots, r). \quad (1.2)$$

It is easily seen that these operators again satisfy the usual commutation relations if $O = (O_{i,j})_{i,j=0,1,\ldots,r}$ is an orthogonal matrix. We shall assume in addition that the first row of O is given by

$$O_{0,j} = b_0 = \frac{1}{\sqrt{r + 1}}. \quad (1.3)$$

Next we consider the operators

$$\Delta_k = \sum_{j=0}^{r} O_{k,j} N_j \quad (k = 1, 2, \ldots, r) \quad (1.4)$$

where N_j denotes the number operator corresponding to the creation and annihilation operators a_j^* and a_j: $N_j = a_j^* a_j$. We denote its eigenstates by $|n_0, n_1, \ldots, n_r\rangle$ so that $N_j |n_0, n_1, \ldots, n_r\rangle = n_j |n_0, n_1, \ldots, n_r\rangle$ and

$$\Delta_k |n_0, n_1, \ldots, n_r\rangle = \sum_{j=0}^{r} O_{i,j} n_j |n_0, n_1, \ldots, n_r\rangle. \quad (1.5)$$

We also introduce the eigenstates of the number operators $c_k^* c_k$. We write these as $|n; m_1, \ldots, m_r\rangle$, where n is the total number of particles. Thus

$$c_k^* c_k |n; m_1, \ldots, m_r\rangle = m_k |n; m_1, \ldots, m_r\rangle \quad (k = 1, 2, \ldots, r) \quad (1.6)$$

but

$$c_0^* c_0 |n; m_1, \ldots, m_r\rangle = \left(n - \sum_{k=1}^{r} m_k \right) |n; m_1, \ldots, m_r\rangle. \quad (1.7)$$

We have singled out the first of the operators $c^* c$ because, as in [1] we want to take the limit $n \to \infty$ keeping m_1, \ldots, m_r fixed. (This is different from [3] where the number of creation and annihilation operators tends to infinity.) We consider general functions of the operators Δ_k, which are the analogues of the operator Δ in [1]. Our main theorem now reads:

2
Theorem. Let $f : \mathbb{R} \to \mathbb{C}$ be a continuous and bounded function. Then the following limit exists and is given by the right-hand side:

$$
\lim_{n \to \infty} \langle n; m_1, \ldots, m_r | f \left(\frac{\Delta_1}{\sqrt{n}}, \ldots, \frac{\Delta_r}{\sqrt{n}} \right) | n; m_1, \ldots, m_r \rangle
= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \left(\prod_{k=1}^{r} \frac{1}{n_k!} H_{n_k}^2(u_k) \right) \exp \left[-\frac{1}{2} \sum_{k=1}^{r} u_k^2 \right]
\times f(b_0 u_1, \ldots, b_0 u_r) \frac{du_1}{\sqrt{2\pi}} \cdots \frac{du_r}{\sqrt{2\pi}},
$$

where H_n denotes the n-th Hermite polynomial:

$$H_n(x) = (-1)^n e^{x^2/2} \left(\frac{d}{dx} \right)^n e^{-x^2/2}.$$

We prove this theorem in §2 by demonstrating that the characteristic functions converge. It is well-known that this suffices: see [2]. As in [1] we can now conjecture results about the restricted trace of exponentials of the form $\exp \left[-\beta \sum_{k=1}^{r} c_k^* c_k + f(\Delta_1/\sqrt{n}, \ldots, \Delta_r/\sqrt{n}) \right]$ using the Trotter product formula:

$$
\lim_{n \to \infty} \text{Trace}_n \exp \left[-\beta \sum_{k=1}^{r} c_k^* c_k + f \left(\frac{\Delta_1}{\sqrt{n}}, \ldots, \frac{\Delta_r}{\sqrt{n}} \right) \right]
= \lim_{n \to \infty} \lim_{m \to \infty} \sum_{(n_1, \ldots, n_r)} \prod_{k=1}^{m} \left\{ e^{-\frac{\beta}{m} \sum_{k=1}^{r} c_k^* c_k} e^{f(\Delta_1/\sqrt{n}, \ldots, \Delta_r/\sqrt{n})/m} \right\}^m |n; n_1, \ldots, n_r\rangle
\times \langle n; n_1^{(q+1)}, \ldots, n_r^{(q+1)} | e^{-\frac{\beta}{m} \sum_{k=1}^{r} c_k^* c_k} e^{f(\Delta_1/\sqrt{n}, \ldots, \Delta_r/\sqrt{n})/m} |n; n_1^{(q)}, \ldots, n_r^{(q)}\rangle
= \lim_{m \to \infty} \sum_{(n_1^{(1)}, \ldots, n_r^{(1)}), \ldots, (n_1^{(m)}, \ldots, n_r^{(m)})} \prod_{q=1}^{m} e^{-\frac{\beta}{m} \sum_{k=1}^{r} n_k^{(q)}}
\times \prod_{q=1}^{m} \int_{-\infty}^{\infty} \frac{du_1}{\sqrt{2\pi}} \cdots \int_{-\infty}^{\infty} \frac{du_r}{\sqrt{2\pi}} \left(\prod_{k=1}^{r} \frac{1}{n_k^{(q)}!} H_{n_k^{(q)}}(u_k) \right)
\times \left(\prod_{k=1}^{r} \frac{1}{n_k^{(q+1)}!} H_{n_k^{(q+1)}}(u_k) \right) e^{f(b_0 u_1, \ldots, b_0 u_r)/m} \exp \left[-\frac{1}{2} \sum_{k=1}^{r} u_k^2 \right].
$$

(1.10)
Notice that we have interchanged the two limits without justification here. Also, we used a straightforward extension of the theorem above. To proceed, we introduce the harmonic oscillator hamiltonians \mathcal{H}_k on $L^2(\mathbb{R}^r)$ in each variable u_k:

$$\mathcal{H}_k = -\frac{\partial^2}{\partial u_k^2} + \frac{1}{4} u_k^2 - \frac{1}{2}$$

with complete set of eigenfunctions ψ_m given by

$$\psi_m(u_k) = \frac{1}{\sqrt{m!}} \mathcal{H}_m(u_k) \Omega_0(u_k),$$

where Ω_0 is the ground state:

$$\Omega_0(u_k) = (2\pi)^{-1/4} e^{-\frac{u_k^2}{4}}.$$

Thus,

$$\mathcal{H}_k \Omega_0 = 0 \quad \text{and} \quad \mathcal{H}_k \psi_m = m \psi_m.$$

Inserting these functions in (1.10) we obtain

$$\begin{align*}
\lim_{n \to \infty} \text{Trace}_n \exp \left[-\beta \sum_{k=1}^r c_k^* c_k + f \left(\frac{\Delta_1}{\sqrt{n}}, \ldots, \frac{\Delta_r}{\sqrt{n}} \right) \right] &= \\
= \lim_{m \to \infty} \sum_{(n_1^{(1)}, \ldots, n_r^{(1)}): \sum_{k=1}^r n_k^{(1)} \leq n} \ldots \sum_{(n_1^{(m)}, \ldots, n_r^{(m)}): \sum_{k=1}^r n_k^{(m)} \leq n} \prod_{q=1}^m e^{-\frac{\beta}{m} \sum_{k=1}^r n_k^{(q)}} \\
&\times \prod_{q=1}^m \int \ldots \int \left(\prod_{k=1}^r \psi_{n_k}^{(q)}(u_k) \right) \left(\prod_{k=1}^r \psi_{n_k}^{(q+1)}(u_k) \right) e^{f(b_0 u_1, \ldots, b_0 u_r)/m} \, du_1 \ldots du_r \\
&= \lim_{m \to \infty} \sum_{(n_1^{(1)}, \ldots, n_r^{(1)}): \sum_{k=1}^r n_k^{(1)} \leq n} \ldots \sum_{(n_1^{(m)}, \ldots, n_r^{(m)}): \sum_{k=1}^r n_k^{(m)} \leq n} \\
&\times \prod_{q=1}^m \left(\prod_{k=1}^r \psi_{n_k}^{(q+1)}(u_k) \right) e^{-\frac{\beta}{m} \sum_{k=1}^r \mathcal{H}_k} e^{f(b_0 u_1, \ldots, b_0 u_r)/m} \left| \prod_{k=1}^r \psi_{n_k}^{(q)}(u_k) \right| \\
&= \lim_{m \to \infty} \sum_{(n_1, \ldots, n_r): \sum_{k=1}^r n_k \leq n} \\
&\times \left(\prod_{k=1}^r \psi_{n_k}(u_k) \right) \left(e^{-\frac{\beta}{m} \sum_{k=1}^r \mathcal{H}_k} e^{f(b_0 u_1, \ldots, b_0 u_r)/m} \right)^m \left| \prod_{k=1}^r \psi_{n_k}(u_k) \right| \\
&= \text{Trace} \exp \left[-\beta \sum_{k=1}^r \mathcal{H}_k + f(b_0 u_1, \ldots, b_0 u_r) \right].
\end{align*}$$

(1.15)
Thus we have the following

Conjecture. For any continuous bounded function $f : \mathbf{R}^r \to \mathbf{R}$,

$$
\lim_{{n \to \infty}} \text{Trace}_n e^{-\beta \sum_{k=1}^{r} c_k^* c_k + f(\hat{\mathbf{x}}_1, \ldots, \hat{\mathbf{x}}_n)} = \text{Trace} e^{-\beta \sum_{k=1}^{r} \mathcal{H}_k + f(b_0 u_1, \ldots, b_0 u_r)}.
$$

(1.16)

To prove this result along the lines of [1] is feasible but rather involved. This line of proof is carried out in a separate paper [4]. Another approach might be to use the methods of [5].

REMARK. As remarked in [1], the theorem above is a non-commutative analogue of the central limit theorem for Bernoulli random variables. In the latter case there are interesting bounds on the asymptotic behaviour for finite n, the so-called Berry-Esseen theorem [6,7] (See also [8]). It is an interesting question whether these bounds extend to the present situation, and in particular how they depend on the number of creation and annihilation operators r.
2. Proof of the main theorem

Given \(m_1, \ldots, m_r \) with \(\sum_{i=1}^r m_i \leq n \), let \(m_0 = n - \sum_{i=1}^r m_i \), and denote

\[
\mathbf{m} = (m_0, m_1, \ldots, m_r),
\]

\[
|\mathbf{m}| = m_0 + m_1 + \ldots + m_r,
\]

and

\[
\binom{n}{\mathbf{m}} = \frac{n!}{m_0! m_1! \ldots m_r!}.
\]

Then, for arbitrary real numbers \(\alpha_0, \alpha_1, \ldots, \alpha_r \), we compute the following generating function:

\[
\sum_{\mathbf{m}:|\mathbf{m}|=n} \left(\binom{n}{\mathbf{m}} \right)^{1/2} \prod_{p=0}^{r} \alpha_p^{m_p} |n; m_1, \ldots, m_r) = \frac{1}{\sqrt{n!}} \left[\sum_{k=0}^{r} \alpha_k \sum_{j=0}^{r} O_{k,j} a_j^* \right]^n |0\rangle
\]

\[
= \frac{1}{\sqrt{n!}} \left[\sum_{j=0}^{r} A_j(\alpha) a_j^* \right]^n |0\rangle
\]

\[
= \sum_{\mathbf{m}:|\mathbf{m}|=n} \left(\binom{n}{\mathbf{m}} \right)^{1/2} \prod_{j=0}^{r} A_j(\alpha)^{n_j} |n_0, n_1, \ldots, n_r),
\]

where we have denoted

\[
A_j(\alpha) = \sum_{k=0}^{r} O_{k,j} \alpha_k.
\]

Using the identity (2.1) we have

\[
\sum_{\mathbf{m}:|\mathbf{m}|=n} \sum_{\mathbf{m}':|\mathbf{m}'|=n} \left(\binom{n}{\mathbf{m}} \right)^{1/2} \left(\binom{n}{\mathbf{m}'} \right)^{1/2} \prod_{k=0}^{r} \alpha_k^{m_k} \beta_k^{m_k'}
\]

\[
\times \langle n; m_1', \ldots, m_r' | \exp \left[i \sum_{k=1}^{r} t_k \Delta_k \right] | n; m_1, \ldots, m_r \rangle = \sum_{\mathbf{m}':|\mathbf{m}'|=n} \prod_{j=0}^{r} A_j(\alpha)^{n_j} A_j(\beta)^{n_j} \exp \left[i \sum_{k=1}^{r} t_k \sum_{j=0}^{r} O_{k,j} a_j \right]
\]

\[
= \left\{ \sum_{j=0}^{r} A_j(\alpha) A_j(\beta) \exp \left[i \sum_{k=1}^{r} t_k O_{k,j} \right] \right\}^n.
\]
We now use the following two lemmas:

Lemma 1 Let \(A_j(\alpha) = \sum_{k=0}^r O_{k,j} \alpha_k \) then the coefficient of \(\prod_{k=0}^r \alpha_k^{n_k} \beta_k^{n_k} \) in the expansion of

\[
\left\{ \sum_{j=0}^r A_j(\alpha) A_j(\beta) \exp \left[i \sum_{k=1}^r t_k O_{k,j} \right] \right\}^n
\]

is:

\[
\sum_{\{n(p,q)\}_{p,q=1}^{r} \star} \frac{n!}{\prod_{q=1}^r \left(n_q - \sum_{p=1}^r n(p,q) \right)!} \prod_{p=1}^r D_{p,q}(t)^{n(p,q)} \\
\times \prod_{p=1}^r \frac{1}{\Pi_{p=1}^r n(p,q)!} \prod_{p=1}^r \frac{1}{n(p,q)!} \prod_{p=1}^r D_{p}(t)^{2n_p - \sum_{q=1}^r (n(p,q) + n(q,p))},
\]

(2.4)

where the star denotes the following restrictions on the sum:

\[
\sum_{q=1}^r n(p,q) \leq n_p \text{ and } \sum_{p=1}^r n(p,q) \leq n_q,
\]

and where

\[
D_{p,q}(t) = \sum_{j=0}^r O_{p,j} O_{q,j} \exp \left[i \sum_{k=1}^r O_{k,j} t_k \right]
\]

(2.5)

and \(D_{p}(t) = D_{p,0}(t) \).

Lemma 2. The following hold:
1. \(\lim_{n \to \infty} D_p \left(\frac{t}{\sqrt{n}} \right) = 0 \) (\(p = 1, 2, \ldots, r \)), and \(\lim_{n \to \infty} D_0 \left(\frac{t}{\sqrt{n}} \right) = 1 \);
2. \(\lim_{n \to \infty} \sqrt{n} D_p \left(\frac{t}{\sqrt{n}} \right) = i t_p b_0 \) (\(p = 1, 2, \ldots, r \));
3. \(\lim_{n \to \infty} D_{p,p} \left(\frac{t}{\sqrt{n}} \right) = 1 \) and \(\lim_{n \to \infty} D_{p,q} \left(\frac{t}{\sqrt{n}} \right) = 0 \), (\(1 \leq p, q \leq r \));
4. \(\lim_{n \to \infty} D_0 \left(\frac{t}{\sqrt{n}} \right)^n = \exp \left[-\frac{1}{2} b_0^2 \sum_{k=1}^r t_k^2 \right] \).
By Lemma 1,

\[
\lim_{n \to \infty} \langle n; n_1, \ldots, n_r \rangle \exp \left[\frac{i}{\sqrt{n}} \sum_{k=1}^{r} t_k \Delta_k \right] |n; n_1, \ldots, n_r\rangle =
\]

\[
= \lim_{n \to \infty} \sum_{\{p(q)\}^{r}_{q=1}} \frac{(n - \sum_{p=1}^{r} n_p)!}{(n + \sum_{p=1}^{r} n_p - 2 \sum_{p=1}^{r} n_p)!} \prod_{p=1}^{r} n_p!
\]

\[
\times D_0 \left(\frac{t}{\sqrt{n}} \right) \prod_{p=1}^{r} \left(\frac{n + \sum_{p=1}^{r} n(p,q) - 2 \sum_{p=1}^{r} n_p}{\sqrt{n}} \right) D_{p,q} \left(\frac{t}{\sqrt{n}} \right) \prod_{p,q=1}^{r} \frac{1}{D_{p,q} \left(\frac{t}{\sqrt{n}} \right)}^{2n_p - \sum_{q=1}^{r} (n(p,q) + n(q,p))}. \tag{2.6}
\]

Now, because of Lemma 2.2 we must compensate each factor \(D_p \left(\frac{t}{\sqrt{n}} \right) \) by a factor \(\sqrt{n} \). But,

\[
\frac{(n - \sum_{p=1}^{r} n_p)!}{(n + \sum_{p=1}^{r} n_p - 2 \sum_{p=1}^{r} n_p)!} \sim n \sum_{p=1}^{r} (n_p - \sum_{q=1}^{r} n(p,q)), \tag{2.7}
\]

which is just the number of factors \(\sqrt{n} \) needed to cover all the factors \(D_p \left(\frac{t}{\sqrt{n}} \right) \).

By Lemma 2.3 this means that there cannot be any factors \(D_{p,q} \left(\frac{t}{\sqrt{n}} \right) \) with \(p \neq q \), i.e. \(n(p,q) = 0 \) for \(p \neq q, p, q \geq 1 \). It now follows that

\[
\lim_{n \to \infty} \langle n; n_1, \ldots, n_r \rangle \exp \left[\frac{i}{\sqrt{n}} \sum_{k=1}^{r} t_k \Delta_k \right] |n; n_1, \ldots, n_r\rangle =
\]

\[
= \sum_{\{n(p)\}^{r}_{p=1}} \prod_{p=1}^{r} \left(\frac{n_p}{n(p,p)} \right) \frac{1}{\prod_{p=1}^{r} (n_p - n(p,p))!}
\]

\[
\times \exp \left[\frac{1}{2} \sum_{p=1}^{r} t_k^2 \right] \prod_{p=1}^{r} (ib_0 t_p)^{2(m_p - n(p,p))} \tag{2.8}
\]

\[
= \sum_{m_1=0}^{n_1} \cdots \sum_{m_r=0}^{n_r} \prod_{p=1}^{r} \left(\frac{n_p}{m_p} \right) \left(-1 \right)^{m_p} (ib_0 t_p)^{2m_r} e^{-\frac{1}{2} m_p t_p^2}
\]

\[
= \prod_{p=1}^{r} \left\{ \frac{1}{n_p} \int_{-\infty}^{\infty} H_{n_p}(x) e^{ib_0 t_p x_p - \frac{1}{2} x_p^2} \frac{dx_p}{\sqrt{2\pi}} \right\}. \tag*{8}
\]
The last identity was proved in [1]. We have thus proved the convergence of the characteristic function. It is well-known that this implies the convergence for arbitrary continuous functions f as in the theorem.

3. Proof of Lemma 1.

First observe that

$$
\begin{align*}
\sum_{j=0}^{r} A_j(\alpha) A_j(\beta) \exp \left[i \sum_{k=1}^{r} O_{k,j} t_k \right] &= \\
= &\sum_{j=0}^{r} \sum_{p=0}^{r} O_{p,j} \alpha_p \sum_{q=0}^{r} O_{q,j} \beta_q \exp \left[i \sum_{k=1}^{r} O_{k,j} t_k \right] \\
= &\sum_{j=0}^{r} O_{j,j}^2 \exp \left[i \sum_{k=1}^{r} O_{k,j} t_k \right] \alpha_0 \beta_0 \\
&+ \sum_{p=1}^{r} \sum_{j=0}^{r} O_{0,j} O_{p,j} \exp \left[i \sum_{k=1}^{r} O_{k,j} t_k \right] (\alpha_p \beta_0 + \alpha_0 \beta_p) \\
&+ \sum_{p=1}^{r} \sum_{q=1}^{r} O_{p,j} O_{q,j} \exp \left[i \sum_{k=1}^{r} O_{k,j} t_k \right] \alpha_p \beta_q \\
= &D_0(t) \alpha_0 \beta_0 + \sum_{p=1}^{r} D_p(t) (\alpha_p \beta_0 + \alpha_0 \beta_p) + \sum_{p,q=1}^{r} D_{p,q}(t) \alpha_p \beta_q.
\end{align*}
$$

(3.1)

It now follows that

$$
\left\{ \sum_{j=0}^{r} A_j(\alpha) A_j(\beta) \exp \left[i \sum_{k=1}^{r} O_{k,j} t_k \right] \right\}^n = \\
= \sum_{(n(p,q))_{p,q=0}^{r}} \sum_{\sum_{p,q=0}^{r} n(p,q)=n} \frac{n!}{\prod_{p,q=0}^{r} n(p,q)!} \prod_{p,q=0}^{r} D_{p,q}(t)^{n(p,q)} (\alpha_p \beta_q)^{n(p,q)}.
$$

(3.2)

In order to extract the terms with $\prod_{p=0}^{r} (\alpha_p \beta_p)^{n_p}$, that is, $\sum_{p=0}^{r} n(p,q) = n_p$ and $\sum_{p=0}^{r} n(p,q) = n_q$, notice that these are $2(r+1)$ conditions on $(r+1)^2$ variables, but with one redundancy: if we sum the first set of relations over p or the second set over q we must obtain the same number $\sum_{p=0}^{r} n_p = n$. This leaves r^2 free
variables which we take to be \(n(p, q) \) with \(1 \leq p, q \leq r \). Then

\[
\begin{align*}
n(0, p) &= n_p - \sum_{q=1}^{r} n(q, p), \\
n(p, 0) &= n_p - \sum_{q=1}^{r} n(p, q), \\
n(0, 0) &= n + \sum_{p, q=1}^{r} n(p, q) - 2 \sum_{p=1}^{r} n_p.
\end{align*}
\] (3.3)

This yields the expression quoted in the lemma.

Notice first that

\[
\exp \left[i \frac{1}{\sqrt{n}} \sum_{k=1}^{r} O_{k,j} t_k \right] \to 1 \text{ as } n \to \infty. \tag{4.1}
\]

This shows that

\[
D_0 \left(\frac{t}{\sqrt{n}} \right) = b_0^2 \sum_{j=0}^{r} \exp \left[i \frac{1}{\sqrt{n}} \sum_{k=1}^{r} O_{k,j} t_k \right] \to b_0^2 (r + 1) = 1. \tag{4.2}
\]

and more generally,

\[
D_{p,q} \left(\frac{t}{\sqrt{n}} \right) \to \sum_{j=0}^{r} O_{p,j} O_{q,j} = \delta_{p,q}. \tag{4.3}
\]

Multiplying by \(\sqrt{n} \) we have for \(p \geq 1 \),

\[
\lim_{n \to \infty} \sqrt{n} D_p \left(\frac{t}{\sqrt{n}} \right) = \\
= \lim_{n \to \infty} \sum_{j=0}^{r} O_{0,j} O_{p,j} \sqrt{n} \left(\exp \left[i \frac{1}{\sqrt{n}} \sum_{k=1}^{r} O_{k,j} t_k \right] - 1 \right) \tag{4.4}
\]

\[
= \sum_{j=0}^{r} b_0 O_{p,j} \left\{ i \sum_{k=1}^{r} O_{k,j} t_k \right\} = i b_0 t_p.
\]
Finally,

\[
\lim_{n \to \infty} D_0 \left(\frac{t}{\sqrt{n}} \right)^n = \\
= \lim_{n \to \infty} \left\{ \sum_{j=0}^{r} b_0^2 \exp \left[i \frac{1}{\sqrt{n}} \sum_{k=1}^{r} O_{k,j} t_k \right] \right\}^n \\
= \lim_{n \to \infty} \left\{ 1 - \frac{1}{2} b_0^2 \sum_{j=0}^{r} \left(\sum_{k=1}^{r} O_{k,j} t_k \right)^2 + {\mathcal O} \left(\frac{1}{n^{1/2}} \right) \right\}^n \\
= \exp \left[-\frac{1}{2} b_0^2 \sum_{j=0}^{r} \left(\sum_{k=1}^{r} O_{k,j} t_k \right)^2 \right] = \exp \left[-\frac{1}{2} b_0^2 \sum_{k=1}^{r} t_k^2 \right].
\]

(4.5)

as stated.

References.
4. T. C. Dorlas: Proof of a general noncommutative central limit theorem using a Feynman-Kac representation. Following article.