A Combinatorial Identity

Tony C. Dorlas, Alexei L. Rebenko, Baptiste Savoie.

January 31, 2019

Abstract

We prove an interesting combinatorial identity, which we came across in counting contributions from forest graphs, but may be of more general interest.

MSC-2010 number: 05A19, 05A10.

Keywords: Combinatorial identities, binomial formula, mathematical induction.

1 The main result.

The aim of this note is to prove the following combinatorial identity, which we came across in evaluating contributions from forest graphs to a cluster expansion for classical gas correlation functions (see [1]).

Theorem 1 Given \(m, p \in \mathbb{N} \) with \(1 \leq p \leq m \), and a collection \((x_i)_{i=1}^m \) of (complex) numbers \(x_i \in \mathbb{C} \), the following identity holds

\[
\sum_{\{I_1, \ldots, I_p\} \in \Pi_p(\{1, \ldots, m\})} \prod_{j=1}^p \left(\sum_{i \in I_j} x_i \right)^{|I_j|-1} = \left(\frac{m-1}{p-1} \right) \left(\sum_{i=1}^m x_i \right)^{m-p},
\]

(1)

where the sum is over the set \(\Pi_p(\{1, \ldots, m\}) \) of all partitions \((I_j)_{j=1}^p \) of \(\{1, \ldots, m\} \) into \(p \) non-empty subsets.
2 Proof.

The proof is done by induction on m and p. For $m = p$ both sides are equal to 1, and for $p = 1$ both sides are equal to $(\sum_{i=1}^{m} x_i)^{m-1}$. Now assume that (1) holds true for a given $m \geq 1$ and all $p \leq m$. Let $\mathcal{L}_m, \mathcal{R}_m$ denote the left- and right-hand side of (1) respectively. We may assume that $1 \in I_1$ and expand the factor $(\sum_{i \in I_1} x_i)^{|I_1|^{-1}}$ in powers of l_1:

$$
\left(\sum_{i \in I_1} x_i \right)^{\frac{|I_1|}{1-1}} = \sum_{n=0}^{\frac{|I_1|-1}{n}} \left(\sum_{i \in I_1} x_i \right)^{\frac{|I_1|}{1-1-n}}.
$$

Inserting this into \mathcal{L}_{m+1} and denoting $\tilde{I}_1 = I_1 \setminus \{1\}$, we have

$$
\mathcal{L}_{m+1} = \sum_{n=0}^{m+1-p} l_1^n \sum_{\{\tilde{I}_1, \ldots, I_p\} \in \Pi_p(\{1, \ldots, m+1\})} \left(\sum_{i \in \tilde{I}_1} x_i \right)^{\frac{|\tilde{I}_1|}{1-n}} \prod_{j=2}^{p} \left(\sum_{i \in I_j} x_i \right)^{\frac{|I_j|}{1-n}}.
$$

If $n = 0$, we separate out the term $\tilde{I}_1 = \emptyset$, for which $\{I_2, \ldots, I_p\} \in \Pi_{p-1}(\{2, \ldots, m+1\})$. If $\tilde{I}_1 \neq \emptyset$ then $\{\tilde{I}_1, I_2, \ldots, I_p\} \in \Pi_p(\{2, \ldots, m+1\})$. Conversely, given a partition $\{\tilde{I}_1, I_2, \ldots, I_p\} \in \Pi_p(\{2, \ldots, m+1\})$ we obtain a unique partition of $\{1, \ldots, m+1\}$ by adding 1 to any of the sets \tilde{I}_j with $j \in \{1, \ldots, p\}$. We can therefore write

$$
\mathcal{L}_{m+1} = \sum_{\{I_2, \ldots, I_p\} \in \Pi_{p-1}(\{2, \ldots, m+1\})} \prod_{j=2}^{p} \left(\sum_{i \in I_j} x_i \right)^{\frac{|I_j|}{1-n}}
$$

$$+ \sum_{n=0}^{m+1-p} l_1^n \sum_{j_1=1}^{p} \sum_{\{I_1, \ldots, I_p\} \in \Pi_p(\{2, \ldots, m+1\})} \left(\sum_{i \in I_j} x_i \right)^{\frac{|I_j|}{1-n}} \prod_{j=2}^{p} \left(\sum_{i \in I_j} x_i \right)^{\frac{|I_j|}{1-n}}
$$

Expanding the quantity \mathcal{R}_{m+1} on the right-hand side of (1) in powers of
it follows that it suffices to prove the identities

\[
\sum_{\{I_2, \ldots, I_p\} \in \Pi_{p-1}(\{2, \ldots, m+1\})} \prod_{j=2}^{p} \left(\sum_{i \in I_j} |I_j|^{-1} \right) \\
+ \sum_{j_1=1}^{p} \sum_{\{I_1, \ldots, I_p\} \in \Pi_p(\{2, \ldots, m+1\}) \setminus \{I_1\} \geq n} \left(\sum_{i \in I_1} |I_1|^{-1} \right) \prod_{j=1}^{p} \left(\sum_{i \in I_j} |I_j|^{-1} \right) \\
= \left(\frac{m}{p-1} \right) \left(\sum_{i=2}^{m+1} x_i \right)^{m+1-p}
\]

for \(n = 0\), and

\[
\sum_{j_1=1}^{p} \sum_{\{I_1, \ldots, I_p\} \in \Pi_p(\{1, \ldots, m\}) \setminus \{I_1\} \geq n} \left(|I_1|^{-1} \right) \left(\sum_{i \in I_1} |I_1|^{-1} \right) \prod_{j=1}^{p} \left(\sum_{i \in I_j} |I_j|^{-1} \right) \\
= \left(\frac{m}{p-1} \right) \left(\sum_{i=1}^{m} x_i \right)^{m+1-p-n}
\]

for all \(1 \leq n \leq m+1 - p\). Replacing \(\{2, \ldots, m+1\}\) by \(\{1, \ldots, m\}\) we prove the equivalent

\[
\sum_{\{I_1, \ldots, I_{p-1}\} \in \Pi_{p-1}(\{1, \ldots, m\})} \prod_{j=1}^{p-1} \left(\sum_{i \in I_j} |I_j|^{-1} \right) \\
+ \sum_{j_1=1}^{p} \sum_{\{I_1, \ldots, I_p\} \in \Pi_p(\{1, \ldots, m\}) \setminus \{I_1\} \geq n} \left(\sum_{i \in I_1} |I_1|^{-1} \right) \prod_{j=1}^{p} \left(\sum_{i \in I_j} |I_j|^{-1} \right) \\
= \left(\frac{m}{p-1} \right) \left(\sum_{i=1}^{m} x_i \right)^{m+1-p}
\]

for \(n = 0\), and

\[
\sum_{j_1=1}^{p} \sum_{\{I_1, \ldots, I_p\} \in \Pi_p(\{1, \ldots, m\}) \setminus \{I_1\} \geq n} \left(|I_1|^{-1} \right) \left(\sum_{i \in I_1} |I_1|^{-1} \right) \prod_{j=1}^{p} \left(\sum_{i \in I_j} |I_j|^{-1} \right) \\
= \left(\frac{m}{p-1} \right) \left(\sum_{i=1}^{m} x_i \right)^{m+1-p-n}
\]
for all $1 \leq n \leq m + 1 - p$.

We start with the case of $n = 0$. By the induction hypothesis, the first term equals
\[
\sum_{\{I_1, \ldots, I_{p-1}\} \in \Pi_{p-1}(\{1, \ldots, m\})} \prod_{j=1}^{p-1} \left(\sum_{i \in I_j} x_i \right)^{|I_j|-1} = (m - 1) \left(\sum_{i=1}^{m} x_i \right)^{m+1-p}.
\]

Then second term can be written as
\[
\sum_{j_1=1}^{p} \sum_{\{I_1, \ldots, I_{p}\} \in \Pi_{p}(\{1, \ldots, m\})} \prod_{j=1}^{p} \left(\sum_{i \in I_j} x_i \right)^{|I_j|-1} = \sum_{j_1=1}^{p} \sum_{\{I_1, \ldots, I_{p}\} \in \Pi_{p}(\{1, \ldots, m\})} \prod_{j \neq j_1}^{p} \left(\sum_{i \in I_j} x_i \right)^{|I_j|-1} = (m - 1) \left(\sum_{i=1}^{m} x_i \right)^{m+1-p}
\]
again by the induction hypothesis. Adding the two contributions for $n = 0$ yields (2).

For the case $n = 1$, we have similarly,
\[
\sum_{j_1=1}^{p} \sum_{\{I_1, \ldots, I_{p}\} \in \Pi_{p}(\{1, \ldots, m\})} |\tilde{I}_{j_1}| \left(\sum_{i \in \tilde{I}_{j_1}} x_i \right)^{|\tilde{I}_{j_1}|-1} \prod_{j \neq j_1}^{p} \left(\sum_{i \in I_j} x_i \right)^{|I_j|-1} = \sum_{j_1=1}^{p} |\tilde{I}_{j_1}| \sum_{\{I_1, \ldots, I_{p}\} \in \Pi_{p}(\{1, \ldots, m\})} \prod_{j \neq j_1}^{p} \left(\sum_{i \in I_j} x_i \right)^{|I_j|-1} = m \left(\sum_{i=1}^{m} x_i \right)^{m-p} = m \left(\sum_{i=1}^{m} x_i \right)^{m-p}.
\]

Next we prove the case where $2 \leq n \leq m + 1 - p$. The key idea is to apply the derivation operator $\sum_{k=1}^{m} \frac{\partial^{n-1}}{\partial x_k^{n-1}}$ to the l.h.s. of (1). This gives
\[
\sum_{k=1}^{m} \frac{\partial^{n-1}}{\partial x_k^{n-1}} \sum_{\{I_1, \ldots, I_{p}\} \in \Pi_{p}(\{1, \ldots, m\})} \prod_{j=1}^{p} \left(\sum_{i \in I_j} x_i \right)^{|I_j|-1} = \sum_{j'=1}^{p} \sum_{\{I_1, \ldots, I_{p}\} \in \Pi_{p}(\{1, \ldots, m\})} \prod_{j \neq j'}^{p} \left(\sum_{i \in I_j} x_i \right)^{|I_j|-1} \frac{\partial^{n-1}}{\partial x_k^{n-1}} \sum_{k \in I_{j'}} \left(\sum_{i \in I_{j'}} x_i \right)^{|I_{j'}|-1}.
\]
The \(j' \) term on the right-hand side is obviously equal to zero unless \(|I_{j'}| \geq n\). In that case,

\[
\sum_{k \in I_{j'}} \frac{\partial^{n-1}}{\partial x_k^{n-1}} \left(\sum_{i \in I_{j'}} x_i \right)^{|I_{j'}|-1} = |I_{j'}| \prod_{r=1}^{n-1} (|I_{j'}| - r) \left(\sum_{i \in I_{j'}} x_i \right)^{|I_{j'}|-n},
\]

independently of \(k \in I_{j'} \). Hence we obtain

\[
\sum_{k=1}^{m} \frac{\partial^{n-1}}{\partial x_k^{n-1}} \sum_{\{I_1, \ldots, I_p\} \in \Pi_p(\{1, \ldots, m\})} \prod_{j=1}^{p} \left(\sum_{i \in I_j} x_i \right)^{|I_j|-1}
\]

\[
= \sum_{j'=1}^{p} \sum_{\{I_1, \ldots, I_p\} \in \Pi_p(\{1, \ldots, m\}) \atop |I_{j'}| \geq n} \prod_{r=0}^{n-1} (|I_{j'}| - r) \left(\sum_{i \in I_{j'}} x_i \right)^{|I_{j'}|-n} \prod_{j=1}^{p} \left(\sum_{i \in I_j} x_i \right)^{|I_j|-1}
\]

\[
= n! \left[\sum_{j'=1}^{p} \sum_{\{I_1, \ldots, I_p\} \in \Pi_p(\{1, \ldots, m\}) \atop |I_{j'}| \geq n} \left(\sum_{i \in I_{j'}} x_i \right)^{|I_{j'}|-n} \prod_{j=1}^{p} \left(\sum_{i \in I_j} x_i \right)^{|I_j|-1} \right].
\]

Note that the quantity between square brackets is nothing but the left-hand side of (3). On the other hand, applying the derivation operator \(\sum_{k=1}^{m} \frac{\partial^{n-1}}{\partial x_k^{n-1}} \) to the right-hand side of (1) yields

\[
\binom{m-1}{p-1} \sum_{k=1}^{m} \frac{\partial^{n-1}}{\partial x_k^{n-1}} \left(\sum_{i=1}^{m} x_i \right)^{m-p}
\]

\[
= m \binom{m-1}{p-1} \prod_{r=0}^{n-2} (m - p - r) \left(\sum_{i=1}^{m} x_i \right)^{m+1-p-n}
\]

\[
= n! \binom{m}{p} \binom{m+1-p-n}{n} \left(\sum_{i=1}^{m} x_i \right)^{m+1-p-n},
\]

which is just \(n! \) times the right-hand side of (3). This concludes the proof of (3), and hence also the proof of Theorem 1.

\[\blacksquare\]

References