Lectures 6-8: Solar nebula theory

- o Topics to be covered:
 - o Solar nebula theory

Solar nebula theory

- o Five steps to planet formation in Solar nebula theory.
 - 1. Collapse
 - o Heating via conversion of PE to KE.
 - 2. Spinning
 - o Spinning up of material to conserve AM.
 - 3. Flattening
 - o Sphere to disk due to rotation.
 - 4. Condensation
 - o Gas to liquid and solid particles due to cooling.
 - 5. Accretion
 - o Solid particles 'stick' due to electrostatic and gravitational forces.
- o See extensive review by Lissauer:

http://adsabs.harvard.edu/abs/1993ARA%26A..31..129L

- o For a cloud with $M > M_J$ where M_J ? $(T^3/?)^{1/2} =>$ cloud collapses.
- o Localised density enhancement (???/?) may cause collapse.

- o When pressure << gravity => collapse.
- o Cooling lowers pressure, can trigger collapse.

o Consider N molecules of mass m in a volume of size L at a temperature T.

o Gravitational energy:
$$E_G \sim -\frac{GMM}{L}$$
 where $M = Nm \sim L^3$?

o Thermal energy:
$$E_T \sim NkT$$

o Ratio is:
$$\frac{E_G}{E_T} \sim \frac{GM^2}{LNkT} \sim \frac{G(\rho L^3)m}{LkT}$$
$$= \left(\frac{L}{L_J}\right)^2$$

where
$$L_J$$
 is the *Jeans' length*:

$$L_{J} \sim \left(\frac{kT}{G\rho m}\right)^{1/2}$$

o Gravity wins when $L > L_{J}$.

o Collapse timescale can be also be estimated from gravitational acceleration:

$$g \sim \frac{GM}{L^2} \sim \frac{L}{t^2}$$

o Time to collapse:

$$t \sim \left(\frac{L}{g}\right)^{1/2} \sim \left(\frac{L^3}{GM}\right)^{1/2}$$

$$=> t_G \sim \left(\frac{1}{G\rho}\right)^{1/2}$$

- => denser regions collapse faster.
- o Ignoring gravity, pressure waves travel at sound speed: $c_s \sim \left(\frac{kT}{m}\right)^{1/2}$
- o Sound crossing times is therefore, $t_s \sim \frac{L}{c_s} \sim L \left(\frac{m}{kT}\right)^{1/2}$
 - => Small hot regions oscillate more rapidly.

o Ratio of the collapse time (t_G) to the sound crossing time (t_s) is:

$$\frac{t_s}{t_G} \sim \frac{L\sqrt{G\rho}}{c_s} \sim L\left(\frac{G\rho m}{kT}\right)^{1/2}$$
$$\sim \frac{L}{L_I}$$

where L_J is again the *Jeans length:*

$$L_J \sim c_s \left(\frac{1}{G\rho}\right)^{1/2}$$

o Compare with form given in *Jeans formation theory*.

o As gas cloud collapses, temperatures rise as potential energy converted to kinetic via:

$$E = KE + U = const$$

- o From Conservation of Energy, KE increases as U decreases.
- Temperature therefore rises as $1/2mv^2 = 3/2 kT$ or $T = 1/3k (1/2 m v^2)$.
- o Some energy is radiated away thermally. The solar nebula becomes hottest near its center, where much of the mass collect to form the *protosun*.
- o Protosun eventually becomes so hot that nuclear fusion ignited in its core.

- o Initially, gas and dust with low AM fall to core of cloud. Material with high AM cannot due to centrifugal forces.
- As gas and dust fall to equatorial plane, it collides with material falling in other direction => energy of this motion is dissipated as heat.
- o Consider a parcel of gas which falls from infinity to a circular orbit *r*. If half of gravitaional energy is converted to orbital kinetic energy via

$$\frac{GM_{protostar}}{2r} = \frac{v_c^2}{2}$$

the remainder is available for heat.

o For $M_{protostar} = 1 M_{sun}$, $v_c = 30$ km/s at 1 AU => $T \sim 7 \times 10^4$ K. This temperature is never reached as the time-scale for radiaitve cooling << heating time.

2. Spinning - Solar Nebula Theory

o Solar nebula "spins-up" as it collapses to conserve AM.

$$L_f = L_i$$

$$m v_f r_f = m v_i r_i$$

$$m r_f^2 ? f = m r_i^2 ? i$$

$$= > ? f = ? i (r_i / r_f)^2$$

- o As $r_i > r_f = > \boxed{?}_f > > \boxed{?}_i$. Cloud spins up rapidly as it contract.
- o Need a *breaking* mechanism.
- o Rotation ensures not all of material collapses onto the protosun: the greater the AM of a rotating cloud, the more spread out it will be along its equator.

3. Flattening - Solar Nebula Theory

- o $g = GM/r^2$ is directed *radially* to centre.
- o a = r? is perpendicular to rotation axis. Radial component is $a_r = r$? \sin ?.
- o Net radial acceleration is

$$a(r) = g + a_r$$

$$a(r) = \frac{GM}{r^2} - r\omega^2 \sin \phi$$

- o At pole ($\mathbf{??} = 0$) => $a(r) = \frac{GM}{r^2}$
- o At equator ($\mathbf{??} = 90$) => $a(r) = g r(\mathbf{??})^2$
- o In disk, there's a distance where $g = r ? ^2 =$ this is point where contraction stops.

- o Basic properties of disk depend on how gas behaves in a gravity field.
 - o How does the disk shape determine?

- o What is the velocity of disk?
- o What is the density distribution of disk?
- o How does rotation and gas pressure effect shape?

o In hydrostatic equilibrium

$$\frac{dP}{dz} = -\rho g$$

o z-component of gravity is

$$g = -\omega^2 z$$

o Equation of state for gas is

$$P = c_s^2 \rho$$

o Density profile is thus:

$$\rho = \rho_0 \exp(-z^2/H^2)$$

where the scale-height (ie thickness) is:

$$H = \sqrt{2}c\omega^{-1}$$

- o Disk aspect ratio is defined as: $\frac{H}{r} = \sqrt{2} \frac{c}{r\omega} \propto r^{(1-q)/2}$
- o Condition for disk flaring is: $(1 q)/2 > 0 \Rightarrow q < 1$
- o For typical disks,

$$\frac{H}{r} \propto r^{1/4}$$
 (ie $q = 1/2$)

o In general cases (eg. Galaxies)

$$\omega \propto r^{\beta} \implies \frac{H}{r} \propto r^{-q/2-\beta-1}$$

o Note, disk shape only depends on temperature, not density.

o Radial force balance $F_{gravity} + F_{gas} + F_{rotation} = 0$

$$F_{gravity} + F_{gas} + F_{rotation} = 0$$
$$-\frac{GM_{star}}{r^2} - \frac{1}{\sigma} \frac{dP}{dr} + r\omega^2 = 0$$

where $\sigma = \sigma$ (r) is the surface density distribution.

o Angular velocity of gas is not strictly Keplarian:

$$\omega = \omega (1 - \eta)$$

where η is the viscosity $(0 \le \eta \le 1)$.

o Typically, $\eta \sim 0.001$ -0.01 => disk rotates slightly slower that would expect from Kepler's laws.

Summary of planet formation in disk

- o Formation of planets requires "seeds" chunks of matter that gravity can eventually draw together. Understanding these seeds and clumping is key to explaining the differing compositions of planets.
- o The process by which seeds were sown is *condensation*, when solid or liquid particles condense out of a gas.
- O Condensation is temperature dependent. When the temperature is low enough atoms/molecules solidify.

- Approximate equation for the temperature variation in Solar Nebula is $T(r) = 631 / r^{0.77}$ where r is in AU. "Ice line" where T = 273 K is located at ~ 3 AU from Sun.
- o T < 2,000 K, compounds of silicates (rock) and nickel-iron form.
- o T < 270 K, carbon compounds, silicates and ices form.
- o Planetary interiors to Mars
 - o Nebula temperature > 400 K
 - o Made of silicates and metals
- o Planets beyond Mars
 - o Nebula temperature < 300 K
 - o Made of silicates and ices

- o *Metals* include iron, nickel, aluminum. Most metals condense into solid at temperatures of $1000-1600 \, K$. Metals made up <0.2% of the solar nebula's mass.
- o *Rocks* are common on Earth's surface, primarily silicon-based minerals (silicates). Rocks are solid at temperatures and pressures on Earth but melt or vaporize at temperatures of 500-1300 K depending on type. Rocky materials made up $\sim 0.4\%$ of the nebula by mass.
- o *Hydrogen compounds* are molecules such as methane (CH₄), ammonia (NH₃), and water (H₂O) that solidify into ices below about 150 K. These were significantly more abundant than rocks and metals, making up $\sim 1.4\%$ of nebula's mass.
- o *Light gases (H* and *He)* never condense under solar nebula conditions. These gases made up the remaining 98% of the nebula's mass.
- Note: Order of condensation scales with density.

	Metals	Rocks	Hydrogen Compounds	Light Gases
Examples	iron, nickel, aluminum	silicates	water (H ₂ O) methane (CH ₄) ammonia (NH ₃)	hydrogen, helium
Typical Condensation Temperature	1,000-1,600 K	500-1,300 K	<150 K	(do not condense in nebula)
Relative Abundance (by mass)	•		•	
	(0.2%)	(0.4%)	(1.4%)	(98%)

- o Terrestrial planets are made from materials that constituted $\sim 0.6\%$ of the nebula.
- o Jovian planets were formed in region where $\sim 2\%$ of material condensed. They also captured gas (98%).

- o *T*~1500-2000K at the present-day orbit of Mercury
 - o About Mercury metals can begin to aggregate together
- o Further out, rocky materials condense.
- o Most metals/rocks condensing around the present-day orbit of Mars ($T\sim500K$).
- o Hence inner planets have high metal/rock content and few volatile materials.

o Size and composition of planetesimals depends on temperature and distance from Sun.

o Inner solar system

- Within frost line, only rock and metals can condense.
- o Planetesimals therefore made of rock and metals.
- o Constitute $\sim 0.6\%$ of available material by mass.
- o Inner planetismals therefore grew more *slowly*.
- o Inner planets are therefore *smaller*.

o Outer solar system

- o Beyond frost line, rock, metals and ices condensed.
- o Planetesmals therefore contain these materials.
- o Constitute $\sim 2\%$ of available material by mass.
- o Outer planetismals therefore grew more quickly.
- o Outer planetesmals are therefore *larger*.
- o These process resulted in elementary planetary *cores*.

- o Densities and distances of objects in solar system supports this condensation theory:
 - o Terrestrial planets: 3-6 g cm⁻³
 - => mainly rocks and metals.
 - o Jovian planets: 1-2 g cm⁻³
 - => more ice and captured gas.
 - o Inner Asteroids: contain metalic grains in rocky materials.
 - o Outer Asteroids: less metals, and significantly more ice.

Summary of planet formation in disk

Motion of dust in early disk

- o Dust particles experience drag force: $F_{fric} = -\frac{4}{3}\rho\sigma c_s v$ also referred to as Epstien drag force.
- o In equilibrium, there is balance between drag and gravity: $F_{fric} = mg$
- o Using $g = -\omega^2 z$, $-\frac{4}{3}\rho\sigma c_s v = -m\omega^2 z$ $\therefore v_{term} = -\frac{3m\omega^2}{4\rho\sigma c_c} z$
- o Using $\rho = \rho_0 exp(-z^2/H^2)$, the settling time is therefore:

$$\tau_{sett} = \frac{z}{v_{term}}$$
$$= \frac{\sigma \rho_0}{m\omega^2} \exp\left(-\frac{z^2}{2H^2}\right)$$

=> Dust particles settle into the central plane in $\sim 1.5 \times 10^5$ years.

Planetesimal Formation

- o Formation of terrestrial planets from micron-sized dust requires growth by >12 orders of magnitude.
- o Useful to divide process into three main phases:
 - o **Planetesimal formation:** Planetesimals have radii of order ~10 km. Formed from dust and gas subject to aerodynamic forces, which form rocks-sized objects. Geometric collisions important.
 - o **Terrestrial planet formation:** Planetesimals >tens of km interact via gravity. This phase yields terrestrial planets and cores of giant planets. Note, it takes 500 million 10km radius planetesimals to build terrestrial planets.
 - o **Giant planet formation:** Once planets have grown to $\sim 1 M_{Earth}$, gravitational coupling with gas becomes significant. At masses $> 10 M_{Earth}$, interactions become strong enough to capture envelope from propoplanetary

Solar Nebula Hypothesis

- (a) Solar nebula contracts to form a spinning disk
- (b) Interstellar dust grains act as condensation nuclei allowing accretion of planetesimals
- (c) Solar winds push gas out, outer planets already formed
- (d) Inner planets start to form from collisions of planetesimals
- (e) Collisions continue over time making the 4 inner planets

Step 5: Accretion

- o After condensation, growth of solid particles occurs due to collisions.
- o *Accretion* is growth of grains through collisions the real planet building process.
- o Larger particles formed from both tiny chondrules about 1 mm in size, and from porous molecular aggregates held together by Van der Waals forces.
- o Accretion proceeds in two ways:
 - 1. Collisions due to the *geometric cross section* direct impacts on 'seed' grain.
 - 2. Collisions due to *gravitational attraction* sweeping-up of material from a region much larger than grain diameter.

Step 5: Accretion - geometric

- Consider spherical grain of radius r and geometric cross section $\sigma = \pi r^2$. If number of grains m^{-3} is n_g , and relative velocity of the grains is v_{rel} then volume (V) swept out in time t is $V = \sigma v_{rel} t$, (or $V = \sigma v_{rel}$ for 1 second).
- The number of particles (N) encountered in t is $N = V n_g$ = $\sigma v_{rel} t n_g = \pi r^2 v_{rel} t n_g$
- o In a given period, seed particle's mass grows as

$$\Delta m/\Delta t = m_0 + N m_0 = m_0 (1 + \pi r^2 v_{rel} n_g)$$

where m_0 is the grain mass.

o Mass of the seed particle therefore increases as r^2 for geometrical collisions.

Step 5: Accretion - geometric

- o Settling and growth of single particle in laminar protoplanetary disk.
- o Assumes single particle with initial size = 1 μ m (solid), 0.1 μ m (dashed), or 0.01 μ m (long dashed) accretes all smaller particles it encounters as it settles toward the disk midplane.
- O Upper panel shows height above midplane as a function of time, the lower panel the particle radius *r*.
- o See *Astrophysics of Planet Formation* by Armitage.

Step 5: Geometric and gravitational accretion

- o Objects formed by *geometric accretion are* called planetesimals: act as seeds for planet formation
- o At first, planetesimals were closely packed.
- o Then coalesced into larger objects, forming clumps few *km* across in few million years.
- o Once planetesimals had grown to few *km*, collisions became destructive, making further growth more difficult.
- o Gravitational accretion then begins to dominate. This then accretes planetesimals to form protoplanets.

Step 5: Accretion - gravitational

- o When gravity important, grains accrete from larger volume than during geometric growth phase.
- Consider "test" grain with velocity v_i at a vertical distance s from a "seed" grain. Suppose "test" grain encounters "seed" grain with a final velocity v_f . What is value of s such that the seed grain can capture the "test" grain?
- Using conservation of angular momentum:and conservation of energy:

$$mv_f r = mv_i s$$
 Eqn. 1

$$1/2mv_i^2 = 1/2mv_f^2 - \frac{GMm}{r}$$
 Eqn. 2

where *m* is mass of "test" grain and *M* is mass of "seed" grain.

o Eliminating v_f from Eqns. 1 and 2 gives:

$$s^2 = r^2 + \frac{2GMr}{v_i^2} \qquad Eqn. \ 3$$

o As $M \sim r^3 = > s^2 \sim r^4$.

Step 5: Accretion - gravitational

- Eqn. 3 can also be written as $s^{2} = r^{2} + \frac{2GMr}{v_{i}^{2}}$ $= r^{2} \left(1 + \frac{2GM}{rv_{i}^{2}}\right)$
- o The escape velocity is $v_{esc} = (2GM/r)^{1/2}$, can write

$$s = r \left(1 + \frac{v_{esc}^2}{v_i^2} \right)^{1/2}$$

- o This is the gravitational cross-section, which is much larger than geometric cross-section.
- o Results from "gravitaional focussing".

Step 5: Accretion - gravitational

o The growth rate of the seed particle per unit time is therefore:

$$\Delta m / \Delta t = m_0 (1 + \pi s^2 v_{rel} n_g)$$

- o As $s^2 \sim r^4 => \Delta m / \Delta t \sim r^4 => runaway accretion$.
- o Once grains are large enough that gravity is important, accretion rate increases dramatically.
- o If critical size is achieved, a planetesimal will grow rapidly. Less massive objects grow at a much smaller rate.
- o Model calculation suggest that the first large size objects to form are planetesimals with sizes \sim few tens of km.

5. Accretion

- o These processes result in planetesimals of tens of kilometers in size in less than a million years or so.
- o Timescale for grows can be calculated from:

$$\tau_{grow} = \left(\frac{1}{m} \frac{dm}{dt}\right)^{-1}$$

o Not only do bigger planetesimal grow the fastest, but smaller planetesimals are quickly destroyed by fast collisions and turned into smaller fragments => typically one object will dominate a region.

Accretion versus disruption

- o When bodies collide, outcome can be divided into three broad categories:
 - o **Accretion:** All or most of mass of impactor becomes part of mass of final body. Overall, there is net growth.
 - o **Shattering:** Impact breaks up target body, but pieces remain part of single body a rubble pile.
 - o **Dispersal:** Impact causes fragmentation into many pieces.
- o Boundary between regimes defined vie the specific energy: $Q = \frac{1/2mv^2}{M}$
 - where m is the impactor mass, which collides with a larger body of mass M, with a velocity v.
- o If Q is high, get dispersal, but if Q is low, get accretion.

Star and Disk Formation Steps

- O Class 0: Gravity causes cloud to fragment into dense cores. One core further collapses, becoming hot enough to start emitting in far IR.
- O Class I: By Cloud will start to rotate faster and dust will settle in disk. Inner part of cloud will start to fuse hydrogen => star is born. Spectrum does not look like a star yet as is embedded in envelope of gas and dust.
- O Class II: Envelope dissipated due to stellar wind. Due to the dense disk, object will still radiate in the IR.
- o Class III: Consist of young star surrounded by a transparent disk. Disk matter is discarded through various mechanisms such as photo-evaporation and accretion onto central star.
- o Planet formation thought to occur during transition from class II to class III.

Star and Disk Formation Steps

Class 0

 $T \sim 10^4$ years R $\sim 10^4$ AU dM/dt $\sim 10^{-5}$ M $_{\odot}$ /yr

Class I

 $T \sim 10^5$ years R $\sim 10^3$ AU dM/dt $\sim 10^{-6}$ M $_{\odot}$ /yr

Class II

 $T \sim 10^6$ years R ~ 100 AU

 $dM/dt \sim 10^{-8} M_{\odot}/yr$

Star and Disk Formation Steps

5. Accretion - planet formation

o Accretion therefore progresses according to:

o Once planetesimals are formed, the following can occur:

- o The final stages in the growth of a Terrestrial planet are dramatic and violent.
- o Large Mars-sized protoplanets collide to produce objects such as the Earth and Venus $(M_{Earth} \sim 9 M_{mars})$.

5. Accretion - the planets

o Inner Planets

- o Formed slowly due to small amount of metals and rocks in early solar nebula.
- o Geometric accretion rate and gravitational accretion rate small.
- o By time inner planetesimals were formed and had significant gravitational fields, the nebula had been cleared out by the solar wind.
- o Then no nebular gas then present to capture an elementary atmosphere.

Outer Planets

- o Formed less violently.
- o Great quantities of ice at >3 AU resulted in large rock/ice cores forming.
- o Reason for rapid core growth is that ices have large cross-sectional area.

5. Accretion - The planetesimal graveyard

- o Asteroid belt is 'resting ground' for collisionevolved planetesimals that were not incorporated into a planet.
- o Total mass of asteroid belt \sim 5 x 10^{21} kg (which is about 1/3rd the mass of Pluto or 1/15th the mass of the Moon).
- O Ceres the largest asteroid has a diameter of 940 km and a mass of $\sim 10^{21}$ kg.
- o A planet probably did not form in this region because of the rapid formation, and resulting large mass of Jupiter.

Formation of giants: numerical simulation

- o Three stages for gas giant formation:
 - 1. Core accretion.
 - 2. Accretion of gas until $M_{\rm gas} \sim M_{core}$
 - 3. Runnaway accretion of gas $=> M_{gas} >> M_{core}$
- o See Pollack et al. (1996).

Summary of planet formation in solar nebula theory

