Meteorites and the early
solar system

Three lectures by lan Sanders (Dept of
Geology) Feb 2013




Where on Earth do
meteorites
come from?
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Where In space do
meteorites
come from?
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Distribution of
Asteroid Spectral Classes
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(Dawn Mission
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Asteroid Itokawa
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Low density

Odd shapes




Conclusion:
asteroids are
rubble-piles
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Bronzite chondrites

Hypersthene chondnites
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Fe’¢ 4+ H' — CI?¢ 4+ H® + 2He* + He® + 3H' 4 4 neutrons

nu- high-
cleus energy
before proton
being

struck

& =)
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re- debris spalled off from Fe?
mainder nucleus (plus impacting proton)
of Fe*
nucleus
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What are meteorites
made of ?




Meteorites seen to fall

Sandstone 86%
Igneous 14%







METEORITES

SECOND EDITION

SARA RUSSELL AND MONICA GRADY
THE NATURAL HISTORY MUSEUM













Stones: Chondrites Relative Al?undance
; of Meteorite Falls

Irons

Stony-irons




What are chondrites like ?




Chondritic (sandstone)
meteorites

Chondrules and other bits
Heating effects

Shock effects

CAIs: 2°Al and Pb-Pb age
Pre-solar grains

Organics

Bulk chemistry

Chondrite groups
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McKinney - an intensely shocked chondrite




.
. a
' ) " v - g
y
R ’ «
' M
» 21 >
ot 0 X by o . -
y ¢ v . v - » b 4 ' s
!
. - S . e e
; o’ . » W
A : . - ' »
Y € ' S . "2 .
. 4 ‘9 ’ . b4
“ . A ’ s E »
. ’ p < ' 9 .
\ ; ' . ‘i
. . . . ’ .
.
.
' >, - & ¢ °
\ .
» " ®

Calcium-aluminium-rich inclusion CAI)
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Calcium-aluminium-rich inclusion (CAI)




CAIs were radioactive - they contained short-lived 2°Al,
half-life 0.73 Myr, which quickly decayed away
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Evidence for 2°Al:
26Mg/?*Mg is everywhere the same in meteorites,
and on Earth, but in CAIs (Al-rich, Mg-poor) it is

anomalously high. The excess 2°Mg correlates with
Al/Mg so is presumably the daughter of 20Al.
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Secondary ion mass spectrometer (SIMS)




Figure 25 Tiny crystals of
zircon seen through a
microscope. They are up to
about a tenth of a millimetre

long. They were picked out of
crushed granite from the Ox
Mountains in County Sligo.
The crushed granite is

sieved, and then dropped into
a very dense liquid called
methyl iodide. Quartz,
feldspar and mica float in this
liquid, but zircon, being
extremely dense, sinks and
can be separated.
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CAIs are the
oldest surviving
bits of the
solar system,
first dated
precisely by
the 297Pb/296Pb
method by Yuri
Amelin in 2002.
Their age of
4567 Myr is
taken as the
age of the solar
system.




Tiny grains
with unusual
iIsotopic ratios
are found in
the matrix of
chondrites
that never got
hot. In this 5
micron SiC
grain 12C/13C
is only 39

(Normally it is
)




Extractable Organic Matier
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Terrestrial

Oxygen Isotopes in
Chondrite Groups

10
8180 (per mil)
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What about iron meteorites and
basaltic meteorites?




Remember - chondrites got heated
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The pattern of bands on a polished, etched
surface of an iron meteorite is called the
Widmanstatten structure. Numerical simulation
of the structure constrains the cooling rate.
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Igneous meteorite, like chondrites, plot in discrete
patches on the oxygen isotope diagram. Each
patch is a group of meteorites thought to come
from a single parent asteroid.




So far then:

4567 million years ago, following
‘in-fall’ in a molecular cloud,
radioactive dust in a disk around
the infant sun became converted to

chondrules, CAls and metal grains.
These grains, plus some dust with
original pre-solar grains, accreted
iInto planetesimals.

The planetesimals got hot and
some of them melted.




Where did the disk come from?
Or, what is the origin of the solar
system?
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Hubble Deep Field HST WFPC2

ST Scl OPO January 15, 1996 R. Williams and the HDF Team (ST Scl) and NASA




Question:
Are there more
- atoms in 12
. grams of carbon
. _'than there are
“stars in the entire
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~Sir Fred Hoyle FRS 1915-2001 -
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In this 5
micron
SiC grain
12C/13C

Is only 39

(Normally it
Is 89)




Chondrules are NOT stardust - they
have Solar System isotope ratios, so

were melted (by some unknown process)
in the disk, before they accreted




So, chondrules, CAIs, bits of metal and
matrix dust were made in the disk, then
accreted onto growing planetesimals
(with rare presolar grains). Fragments of
those planetesimals arrive on Earth as
chondrites.










A new paradigm

Chondrules, chronology and recycled
planetesimals: an emerging new view
of the early solar system




So far then:

4567 million years ago, following ‘in-
fall” in a molecular cloud, radioactive
dust in a disk around the infant sun
became converted to chondrules,

CATIs and metal grains. These grains,
plus some original dust with pre-solar
grains, accreted into planetesimals.
The planetesimals got hot and even
melted.




Popular view of events in the disk

1) CATs and

chondrules

were made as gccreted to
flash-melted make

dust clumps  chondrite

parent
bodies

bodies got
hot and

some even
melted to
make iron
and basalt

4) Impacts,
shock and
brecciation
followed
after
cooling




But this popular view of early disk evolution is
at odds with four items of evidence.

1. Basalt clasts are found in some chondrites
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A unique high Mn /Fe microgabbro in the Parnallee
(LL3) ordinary chondrite: nebular mixture or planetary

differentiate from a previously unrecognized planetary
body? *

A.K. Kennedy %, R. Hutchison °, I.D. Hutcheon ?, and S.O. Agrell ©
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ABSTRACT

The study of planetary materials in chondritic meteorites constrains the compositional diversity of materials in different
rovides information on the depree of differentiation of early planetary bodies. We studied a







Robert Hutchison
1938 - 2007




But this popular view of early disk evolution is
at odds with four items of evidence.

2. Chondrules are NOT the same age as CATs,
but about 2 Myr younger.
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Initial 26Al/27Al ratios
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But this popular view of early disk evolution is
at odds with four items of evidence.

3. Iron meteorites (the separation of metal
from rock) happened at the same time as
CAIs based on low eps'®W.




182Hf (lithophile) was decaying to 182W
(siderophile) with a half-life of ~ 10 Myr.
So 182W/ 184W in the disk was increasing.
Now 182W/ 184W in irons is really low and
shows that molten cores separated,
leaving 182Hf parent isotope in the mantle,

at the same time as CAIs were made.




Available oniine at www.sciencedirect.com
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Abstract

Application of "H{-'""*W chronometry to constrain the duration of early solar system proccsses requires the precise
knowledge of the initial HI' and W isotope compositions of the solar system. To determine these valucs, we investigated
the EIf-W isotopic systematics of bulk samples and mineral separates from several Ca,Al-rich inclusions (CAls) from the
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Figure 4. H-W model ages for core formation in iron meteorite




So.

The first planetesimals formed at the
same time as CAIs, and soon melted
(iron cores).

Chondrules were made up to 2 Myr later.

Later still chondrules aggregated, along
with some basalt and other ‘planetary’
bits fo make chondritic planetesimals.

How is this so?
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Assumptions: 3 MeV per 2°Al atom
1.2 wt% Al in dry primitive dust
20Al/27Al initial is 5.25 x 10-

This amounts to about 6.5 kJ per gram of 2°Al energy.




L5
/.)/ane/—f.ﬂ.lﬂﬂ/f
will
me b

Nebular dust began with about 6.5 kJ per gram of
2°A| energy. Only 1.6 kJ per gram is needed to induce
total meltdown. So two half lives - 1.5 Myr - is a
watershed in the early solar system, dividing
planetesimals that will melt from those that will not.




The first crop of planetesimals were so
radioactive that they suffered meltdown.

Chondrules may have been made throughout the
first 2 or 3 Myr.

If so, during the first 1.5 Myr the chondrules
mostly accreted to planetesimals that were
later to melt, and so were destroyed.

After this period, the potency of 26Al had
declined, so newly accreted chondrules
survived melting, producing chondritic
planetesimals.
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after two half lives
(not enough left to get merry)




In a similar way, 2°Al in the disk had lost its
potency to cause melting after two half lives,
or roughly 1.5 Myr




From computer
simulations it is envisaged
that very rapid heating
led to near total melting
and turbulent convection
below a thin conducting
crust from as early as

300 kyr after CAIs.
(Hevey and Sanders 2006
Meteoritics and Planetary

Science)
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About 130 separate parent
bodies are sampled by
meteorites. Over 100 of
them melted and supply
igheous meteorites (irons,
basalt etc.). These bodies
melted, probably soon after
CAIs were made, so the 2

Myr old disk was populated
with molten bodies.
(Note that the supply of
Igheous meteorites, just
14% of falls, is not
representative of parent
body numbers)




And how were chondrules made?

Could mergers of the molten planetesimals
have released impact plumes of incandescent
spray? No better way to make droplets of

liquid than to collide one body into another
body of liquid...













Making chondrules this way seems rather
obvious. Even so, most researchers still
reject the idea, and cling religiously to the
conventional wisdom of chondrules being
shock-melted clumps of dust.

The idea was mooted by Herb Zook (1981),

and supported by a handful of people over
the years since. It had a major boost,
however, in 2011 when Erik Asphaug modelled
the process numerically.




Asphaug et al. (2011) made a computer simulation
of such a collision. In an oblique low velocity
merger, the overshooting molten impactor expands
downstream into a fan-shaped plume of closely-
spaced molten droplets.




Gujba, a rare kind of meteorite with “ball
bearings’ - widely viewed as a collision product.




I'ressure

DNensily

Can chondrule features be reconciled with
formation in this kind of setting?

Yes




1) Chondrules took hours to cool down, not seconds
as they would have done as isolated droplets
radiating to cold space. Clouds of droplets were
optically thick, so chondrules were immersed in a
‘thermal bath’ .




2) Na is volatile but is present in chondrules.
(Alexander et al. 2008, Hewins et al. 2012). It did
not evaporate significantly, so the gas between
chondrules must have been saturated in Na, and
chondrules must have been close to each other.
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closely-spaced chondrules, close enough to
collide and stick during the cooling interval.

3) Compound chondrules are common - they imply
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Flattened
molded
chondrule
from Bovedy
L3

Is the
flattening
parallel to
the accreting
surface of
the
planetesimal?
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5) Megachondrules
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6) Molten slurry has
near-primitive silicate
chemistry, just like
that in chondrules

7) Droplet ‘peak’
temperatures are
sub-liquidus

8) Already molten. No
need to invent a
‘flash melting’
process.




9) Mechanism explains
why most chondrites
are depleted in metal.
Metal gets
concentrated in the

core of the target
body, and so plume of
droplets is short of
metal.




Summary:

The popular view of disk evolution (i.e. chondrules
as nebular ‘flash-melted’ dust clumps, followed
by planetesimal accretion, heating and melting) is
not consistent with current chronological
evidence.

Instead, planetesimals accreted from the outset.
Those formed before 1.5 million years melted
rapidly due to intense 26Al heating. Those formed
after 1.5 million years got hot but did not melt;
they were the chondrite parent bodies.

Chondrules are probably frozen droplets splashed
in cascades when the molten planetesimals were
disrupted by impact or close encounter as they
merged in the first steps towards planet







