Introduction to Plasma Physics (PY5012)

Lecture 11: Waves I

Dr. D. Shaun Bloomfield
Astrophysics Research Group
Trinity College Dublin

What Defines a Wave?

- Mechanical examples:
- sound, string, water
- Energy transfer
- Restoring forces:
- pressure, tension, gravity
- Characteristics:
- wave speed
- motion of medium
- direction of propagation

- Dispersion relation - really important!

Simple Wave Representation

- For plane waves propagating with wave vector $\mathbf{k}=\left(k_{x}, k_{y}, k_{z}\right)$ and angular frequency ω, [N.B. $\mathbf{r}=(x, y, z)$ is the position vector]

$$
U=C_{U} \exp [i(\mathbf{k} \cdot \mathbf{r}-\omega t)]
$$

- and for propagation in only the x-direction,

$$
U=C_{U} \exp [i(k x-\omega t)]
$$

- Constant phase is maintained for a point on the wave when,

$$
\begin{aligned}
& \frac{d}{d t}(k x-\omega t)=0 \\
& \frac{d(k x)}{d t}-\omega=0 \\
& \frac{d x}{d t}=\frac{\omega}{k}=v_{p} \quad \text { phase speed }
\end{aligned}
$$

Wave Group Speed

- Phase speed is not the rate of information (i.e., energy) transfer
- Group speed is similarly defined, but for constant phase on a modulated wave envelope,

$$
U \propto \exp [i(\Delta k x-\Delta \omega t)]
$$

giving,

$$
\begin{gathered}
\frac{d}{d t}(\Delta k x-\Delta \omega t)=0 \\
\frac{d x}{d t}=\frac{\Delta \omega}{\Delta k} \\
\lim _{\Delta \omega \rightarrow 0}\left(\frac{\Delta \omega}{\Delta k}\right)=\frac{d \omega}{d k}=v_{g} \quad \text { group speed }
\end{gathered}
$$

Wave Dispersion Relation

- Everything is contained in dispersion relation,

$$
\omega=\omega(k)
$$

- k often complex, but waves propagate only for,

$$
\Re(\mathbf{k})>0
$$

- Dispersion relation indicates cutoffs and resonances

What Makes Plasma Waves Different?

- Plasma properties:

Plasma properties:	Fluid equations
	- mass continuity - equation of motion
- charged	energy equation ideal gas law
- magnetic fie	EM equations
(complicates everything)	- Maxwell's equations - induction equation
	- Ohm's law

Fluid Equations I

- Mass Continuity

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0
$$

- matter is neither created nor destroyed
- but, $\nabla \cdot(a \mathbf{B})=(\mathbf{B} \cdot \nabla) a+a \nabla \cdot \mathbf{B}$

$$
\frac{\partial \rho}{\partial t}+(\mathbf{v} \cdot \nabla) \rho+\rho \nabla \cdot \mathbf{v}=0
$$

- Equation of Motion

$$
\rho \frac{D \mathbf{v}}{D t}=-\nabla p+\mathbf{F}
$$

- Newton's $2^{\text {nd }}$ law; \mathbf{F} represents all external forces
- $\frac{D}{D t}=\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla$ is the convective time derivative

Expanded Equation of Motion

- External forces
- magnetic force:
$\mathbf{J} \times \mathbf{B} \quad$ (the Lorentz force)
- gravitational force: $\rho \mathbf{g}$
- viscous force (ignored)
- New Equation of Motion

$$
\rho \frac{D \mathbf{v}}{D t}=-\nabla p+\mathbf{J} \times \mathbf{B}+\rho \mathbf{g}
$$

- Expand $D / D t$,

$$
\rho \frac{\partial \mathbf{v}}{\partial t}+\rho(\mathbf{v} \cdot \nabla) \mathbf{v}=-\nabla p+\mathbf{J} \times \mathbf{B}+\rho \mathbf{g}
$$

Fluid Equations II

- Ideal Gas Law

$$
p=\frac{R}{\mu} \rho T
$$

- μ is mean atomic weight
- Energy Equation

$$
\frac{D}{D t}\left(\frac{p}{\rho^{\gamma}}\right)=-L
$$

- L represents all energy losses
- γ is the ratio of specific heats $\left(c_{p} / c_{v} ;\right.$ constant pressure to constant volume), normally taken as $5 / 3$
- only consider adiabatic case (i.e., at constant energy) $L=0$

Modified Energy Equation

- Apply change rule,
- Expand $\frac{D}{D t}$,

$$
\frac{D}{D t}\left(\frac{p}{\rho^{\gamma}}\right)=\frac{1}{\rho^{\gamma}} \frac{D p}{D t}-\frac{\gamma p}{\rho^{\gamma+1}} \frac{D \rho}{D t}=0
$$

$$
\begin{gathered}
\frac{1}{\left(\rho^{\gamma}\right)} \frac{\partial p}{\partial t}+\frac{1}{\left(\rho^{\gamma}\right)}(\mathbf{v} \cdot \nabla) p-\frac{\gamma p}{\rho^{\partial^{+1}}} \frac{\partial \rho}{\partial t}-\frac{\gamma p}{\rho^{\partial^{+1}}}(\mathbf{v} \cdot \nabla) \rho=0 \\
\frac{\partial p}{\partial t}+(\mathbf{v} \cdot \nabla) p-\frac{\gamma p}{\rho}\left(\frac{\partial \rho}{\partial t}+(\mathbf{v} \cdot \nabla) \rho\right)=0
\end{gathered}
$$

- But, $-\left(\frac{\partial \rho}{\partial t}+(\mathbf{v} \cdot \nabla) \rho\right)=\rho \nabla \cdot \mathbf{v}$ from mass continuity equation,

$$
\begin{gathered}
\frac{\partial p}{\partial t}+(\mathbf{v} \cdot \nabla) p+\frac{\gamma p}{\rho}(\rho \nabla \cdot \mathbf{v})=0 \\
\frac{\partial p}{\partial t}+(\mathbf{v} \cdot \nabla) p=-\gamma p \nabla \cdot \mathbf{v}
\end{gathered}
$$

EM Equations I

- Ampère's Law

$$
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}
$$

- gradients in magnetic fields create electric currents
- in MHD approx. displacement current (RHS 2 ${ }^{\text {nd }}$ term) is neglected

$$
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}
$$

- Solenoidal Constraint

$$
\nabla \cdot \mathbf{B}=0
$$

- no magnetic monopoles
- Faraday's Law

$$
\frac{\partial \mathbf{B}}{\partial t}=-\nabla \times \mathbf{E}
$$

- spatially varying electric field induces a magnetic field

EM Equations II

- Gauss' Law

$$
\nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}}
$$

- charge conservation
- Ohm's Law

$$
\mathbf{J}=\sigma(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

- generalized form
- couples EM equations to plasma equations through \mathbf{v}
- Induction Equation

$$
\frac{\partial \mathbf{B}}{\partial t}=\nabla \times(\mathbf{v} \times \mathbf{B})
$$

- combination of Ohm's, Ampère's, and Faraday's laws
- diffusivity term ignored

Wave Assumptions

- Wave amplitudes are small
- allows for linearization of MHD equations
- Basic state is a static equilibrium

Eqn. of Motion:

$$
\begin{equation*}
0=-\nabla p_{0}+\mathbf{J}_{0} \times \mathbf{B}_{0}+\rho_{0} \mathbf{g} \tag{A}
\end{equation*}
$$

Solenoidal Constraint:

$$
\begin{equation*}
\nabla \cdot \mathbf{B}_{0}=0 \tag{B}
\end{equation*}
$$

$$
\begin{equation*}
p_{0}=\frac{R}{\mu} \rho_{0} T_{0} \tag{C}
\end{equation*}
$$

- quantities \mathbf{X}_{0} and X_{0} are the initial equilibrium state
- not necessary to be static (just simplified proof)

Wave Perturbations

- After wave initiation,

$$
\begin{aligned}
& \mathbf{B}=\mathbf{B}_{0}+\mathbf{B}_{1}(\mathbf{r}, t) \\
& \mathbf{v}=\mathbf{v}_{0}+\mathbf{v}_{1}(\mathbf{r}, t) \\
& \rho=\rho_{0}+\rho_{1}(\mathbf{r}, t) \\
& p=p_{0}+p_{1}(\mathbf{r}, t) \\
& T=T_{0}+T_{1}(\mathbf{r}, t)
\end{aligned}
$$

- \mathbf{X} and X are the perturbed quantities
- \mathbf{X}_{1} and X_{1} are the applied perturbations ($\ll \mathbf{X}_{0}$ and X_{0} quantities)
- Static initial condition:
- $\mathbf{v}_{0}=0$
$\mathbf{v}=\mathbf{v}_{1}(\mathbf{r}, t)$
- initial quantities are time independent $\quad \frac{\partial \mathbf{X}_{0}}{\partial t}=0 \quad \frac{\partial X_{0}}{\partial t}=0$

MHD Linearization (continuity eqn.)

- Put perturbed quantities into MHD equations and neglect products of small terms (i.e., $X_{1} Y_{1}$)
- Mass Continuity:

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0 \\
\frac{\partial \rho_{\rho}}{\partial t}+\frac{\partial \rho_{1}}{\partial t}+\nabla \cdot\left(\rho_{0} \mathbf{v}_{1}\right)+\nabla \cdot\left(\left\langle\rho_{1}\right)=0\right.
\end{gathered}
$$

- but with $\frac{\partial \rho_{0}}{\partial t}=0$ and dropping $X_{1} Y_{1}$ terms,

$$
\frac{\partial \rho_{1}}{\partial t}+\nabla \cdot\left(\rho_{0} \mathbf{v}_{1}\right)=0
$$

MHD Linearization (eqn. of motion)

- Eqn. of Motion:

$$
\begin{aligned}
& \rho \frac{\partial \mathbf{v}}{\partial t}+\rho(\mathbf{v} \cdot \nabla) \mathbf{v}=-\nabla p+\mathbf{J} \times \mathbf{B}+\rho \mathbf{g}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{-\nabla p_{0}-\overline{\nabla p_{1}+\mathbf{J}_{0} \times \mathbf{B}_{0}+} \mathbf{J}_{0} \times \mathbf{B}_{1}+\mathbf{J}_{1} \times \mathbf{B}_{0}+\mathbf{J}^{\times<\boldsymbol{B}_{1}}}+\underline{\rho_{0} \mathbf{g}+\rho_{1} \mathbf{g}}
\end{aligned}
$$

- Neglecting $X_{1} Y_{1}$ terms and substituting for \mathbf{J},
$\rho_{0} \frac{\partial \mathbf{v}_{1}}{\partial t}=-\nabla p_{1}+\frac{\left(\nabla \times \mathbf{B}_{0}\right)}{\mu_{0}} \times \mathbf{B}_{1}+\frac{\left(\nabla \times \mathbf{B}_{1}\right)}{\mu_{0}} \times \mathbf{B}_{0}+\rho_{1} \mathbf{g}+\left(-\nabla p_{0}+\mathbf{I}_{0} \times \mathbf{B}_{0}+\rho_{0} \mathbf{g}\right)$
- but, $-\nabla p_{0}+\mathbf{J}_{0} \times \mathbf{B}_{0}+\rho_{0} \mathbf{g}=0$,

$$
\rho_{0} \frac{\partial \mathbf{v}_{1}}{\partial t}=-\nabla p_{1}+\frac{\left(\nabla \times \mathbf{B}_{0}\right)}{\mu_{0}} \times \mathbf{B}_{1}+\frac{\left(\nabla \times \mathbf{B}_{1}\right)}{\mu_{0}} \times \mathbf{B}_{0}+\rho_{1} \mathbf{g}
$$

MHD Linearization (energy/induction eqns.)

- $\underline{\text { Adiabatic Energy Eqn.: }} \frac{\partial p}{\partial t}+(\mathbf{v} \cdot \nabla) p=-\gamma p \nabla \cdot \mathbf{v}$

$$
\frac{\partial p_{0}}{\partial t}+\frac{\partial p_{1}}{\partial t}+\left(\mathbf{v}_{1} \cdot \nabla\right) p_{0}+\frac{\left.\mathbf{v}_{1} \cdot \nabla\right) p_{1}}{\partial t}=-\gamma p_{0} \nabla \cdot \mathbf{v}_{1}-\partial p_{1} \nabla \cdot \mathbf{v}_{1}
$$

- but with $\frac{\partial p_{0}}{\partial t}=0$ and dropping $X_{1} Y_{1}$ terms,

$$
\frac{\partial p_{1}}{\partial t}+\left(\mathbf{v}_{1} \cdot \nabla\right) p_{0}=-\gamma p_{0} \nabla \cdot \mathbf{v}_{1}
$$

- Induction Eqn.:

$$
\frac{\partial \mathbf{B}}{\partial t}=\nabla \times(\mathbf{v} \times \mathbf{B})
$$

$$
\frac{\partial \mathbf{B} / 0}{\partial t}+\frac{\partial \mathbf{B}_{1}}{\partial t}=\nabla \times\left(\mathbf{v}_{1} \times \mathbf{B}_{0}\right)+\frac{\nabla \times\left(+\mathbf{B}_{1}\right)}{(1)}
$$

- but with $\frac{\partial \mathbf{B}_{0}}{\partial t}=0$ and dropping $X_{1} Y_{1}$ terms,

$$
\frac{\partial \mathbf{B}_{1}}{\partial t}=\nabla \times\left(\mathbf{v}_{1} \times \mathbf{B}_{0}\right)
$$

MHD Linearization (gas law/solenoidal constraint)

- Ideal Gas Law:

$$
\begin{gathered}
p=\frac{R}{\mu} \rho T \\
\not L_{2}+p_{1}=\frac{R}{\mu} T_{0}+\frac{R}{\mu} \rho_{1} T_{0}+\frac{R}{\mu} \rho_{0} T_{1}+\frac{R}{\mu} T_{1}
\end{gathered}
$$

- but $p_{0}=\frac{R}{\mu} \rho_{0} T_{0}$ and dropping $X_{1} Y_{1}$ terms,

$$
p_{1}=\frac{R}{\mu} \rho_{1} T_{0}+\frac{R}{\mu} \rho_{0} T_{1}
$$

- Solenoidal Constraint:

$$
\begin{gathered}
\nabla \cdot \mathbf{B}=0 \\
\nabla \mathbf{B}_{0}+\nabla \cdot \mathbf{B}_{1}=0
\end{gathered}
$$

- but with $\nabla \cdot \mathbf{B}_{0}=0$,

$$
\nabla \cdot \mathbf{B}_{1}=0
$$

Summary of Linearized MHD Equations

$$
\begin{gather*}
\frac{\partial \rho_{1}}{\partial t}+\nabla \cdot\left(\rho_{0} \mathbf{v}_{1}\right)=0 \tag{1}\\
\rho_{0} \frac{\partial \mathbf{v}_{1}}{\partial t}=-\nabla p_{1}+\frac{\left(\nabla \times \mathbf{B}_{0}\right)}{\mu_{0}} \times \mathbf{B}_{1}+\frac{\left(\nabla \times \mathbf{B}_{1}\right)}{\mu_{0}} \times \mathbf{B}_{0}+\rho_{1} \mathbf{g} \tag{2}\\
\frac{\partial p_{1}}{\partial t}+\left(\mathbf{v}_{1} \cdot \nabla\right) p_{0}=-p_{0} \nabla \cdot \mathbf{v}_{1} \tag{3}\\
\frac{\partial \mathbf{B}_{1}}{\partial t}=\nabla \times\left(\mathbf{v}_{1} \times \mathbf{B}_{0}\right) \tag{4}\\
p_{1}=\frac{R}{\mu} \rho_{1} T_{0}+\frac{R}{\mu} \rho_{0} T_{1} \tag{5}\\
\nabla \cdot \mathbf{B}_{1}=0 \tag{6}
\end{gather*}
$$

