PY5012: Introduction to Plasma Physics

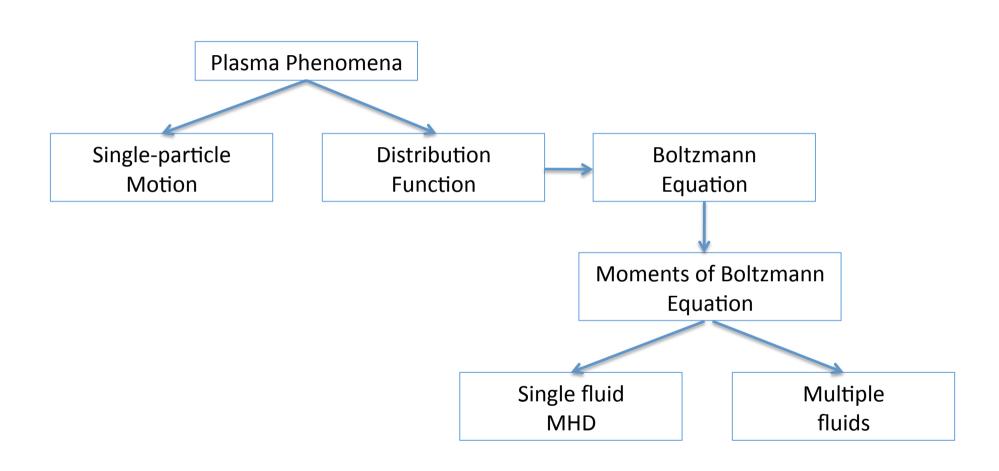
Course website: tinyurl.com/tcdplasmaphysics

Dr. Peter T. Gallagher Astrophysics Research Group Trinity College Dublin

Course Content

Part I: Introductory Plasma Physics

- O Week 1: Lectures 1 & 2
- Week 2: Lectures 3 & 4
- Week 3: Lecture 5 & Tutorial


o Part II: Kinetic and Fluid Theories of Plasmas

- o Week 4: Lectures 6 & 7
- o Week 5: Lectures 8 & 9
- Week 6: Seminar (Tokamaks) & Tutorial
- Week 7: Study week

Part III: Waves in Plasmas

- Week 8: Lectures 10 & 11
- Week 9: Lectures 12 & 13
- Week 10: Seminar (Astrophysical shocks) & Tutorial

Hierarchy of plasma phenomena

Recommended Texts

- Principles of plasma physics for engineers and scientists
 - Umran S. Inan and Marek Gołkowski
 - o Berkeley Basement, HLs (HL-322-390)
- Introduction to plasma physics and controlled fusion
 - Francis F Chen
 - o Hamilton, Open Access 530.44 M41.1 Vol. 1
- Plasma Physics
 - Richard Fitzpatrick
 - o http://farside.ph.utexas.edu/teaching/plasma/
- Astrophysical Plasmas
 - Steven Schwartz, Christopher Owens, and David Burgess
 - http://www.sp.ph.ic.ac.uk/~sjs/APmaster.pdf

Assessment

- Attendance (5%)
- o Essay (30%)
 - o 5 page essay on a topic of your choice
 - Example topics: Ionospheres, laser-produced plasmas, stellar atmospheres, inter stellar medium, auroras, fusion devices, plasma deposition techniques, etc.
 - o Deadline is last lecture in December.
- o Tutorials (30%)
 - o 3 tutorials
- Written exam (35%)