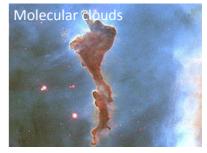
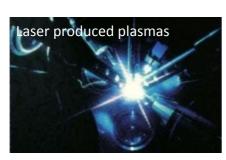
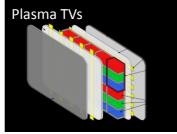
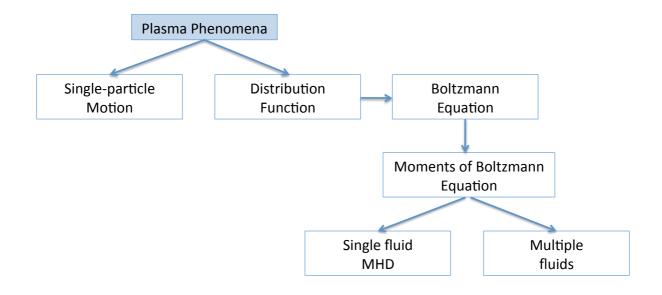
Introduction to Plasma Physics (PY5012) Lectures 1 & 2: Basic Concepts

Dr. Peter T. Gallagher Astrophysics Research Group Trinity College Dublin


What is a plasma?


- o "A plasma is a quasi-neutral gas consisting of positively and negatively charged particles (usually ions and electrons) which are subject to electric, magnetic and other forces, and which exhibit collective behaviour."
 - o Schwartz, Owen and Burgess, "Astrophysical Plasmas".
- Langmuir in 1920s showed that an ionised gas can support oscillations, which resemble a jelly-like substance. He named it a "plasma".
- Scientific term for "plasma" was introduced in 1839 by Czech biologist to describe a jelly-like medium of cells.


Plasmas in Nature and Technology



Hierarchy of plasma phenomena

Basic Parameters: Speed, Energy and Temperature

 \circ For ensemble of N particles of mass m and velocity u, average energy per particle is

$$\langle E \rangle = \frac{1}{2N} \sum_{i=1}^{N} m_i u_i^2$$

o In thermal equilibrium, particles have Maxwell-Boltzmann distribution of speeds.

$$f(u) = N \sqrt{\frac{m}{2\pi k_B T}} e^{-1/2mu^2/k_B T}$$

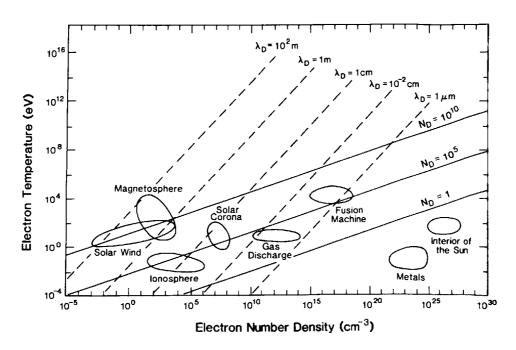
o Average KE can be calculated using

$$\langle E \rangle = \frac{\int_{-\infty}^{+\infty} 1/2mu^2 f(u) du}{\int_{-\infty}^{+\infty} f(u) du}$$

• Integrating numerator by parts, and denominator using $\int_{-\infty}^{+\infty} e^{-a^2x^2} dx = \sqrt{\pi}/a$ we have $\langle E \rangle = 1/2k_BT$ or in 3D,

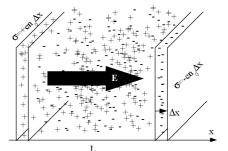
$$\langle E \rangle = 3/2k_BT$$

Basic Parameters: Speed, Energy and Temperature


- Using $\langle E \rangle = 3/2 k_B T$, average KE of a gas at 1 K is $\sim 2.07 \times 10^{-23} J$.
- Plasma temperature often given in electron Volts (eV), where 1 eV = 1.602 x 10^{-19} Coulombs (C).
- o For electron or proton, $|q| = 1.602 \times 10^{-19} \text{ C}$, therefore

$$E = \frac{1/2mu^2}{2|q|} \quad \text{eV}$$

- **Note:** Typically, energy corresponding to k_BT used for temperature, where $k_BT = 1 \text{ eV} = 1.602 \text{ x } 10^{-19} \text{ J}.$
- Q. Show that a 0.5 eV plasma corresponds to a temperature of 5,800 K (solar photosphere).


Range of plasma parameters

o Density range: >30 orders of magnitude. Temperature range: ∼10 orders.

Plasma Oscillations and Plasma Frequency

- Ocnsider plasma of equal number of positive and negative charges. Overall, plasma is neutral, so $n_e = n_i = n$
- Now displace group of electrons by Δx .
- Charge separation gives *E*, which accelerates electrons towards initial position. Electrons overshoot equilibrium position.

- Using Newton's Law, $m_e \frac{d^2 \Delta x}{dt^2} = eE$ (1)
- \circ Displacement sets up E across distance L, similar to parallel plate capacitor.
- Charge per unit area of slab is $\sigma = -ne\Delta x = E = \sigma / \varepsilon_0 = -ne\Delta x / \varepsilon_0$

Plasma Oscillations and Plasma Frequency

Therefore, Eqn. (1) can be written
$$\frac{d^2 \Delta x}{dt^2} = -\frac{ne^2}{m_e \varepsilon_0} \Delta x = -\omega_p^2 \Delta x$$
where
$$\omega_p^2 = \frac{ne^2}{m_e \varepsilon_0} \qquad Electron Plasma$$
Frequency

- o Plasma oscillations are result of plasma trying to maintain charge neutrality.
- O Plasma frequency commonly written $f_p = \frac{\omega_p}{2\pi} = 9000\sqrt{n_e}$ Hz where n_e is in cm^{-3} .
- o In Solar System, f_p ranges from hundreds of MHz (in solar corona) to <1 kHz (near outer planets).
- What is plasma frequency of Earth's ionospere? What implication does this have for
 (i) short wave radio communications and (ii) radio astronomy?

Plasma Criteria

- o In a partially ionized gas where collisions are important, plasma oscillations can only develop if mean free time between collisions (τ_c) is long compared with the oscillation period ($\tau_p = 1/\omega_p$).
- o That is, $\tau_c >> \tau_p$ or $\left[\tau_c/\tau_p >> 1\right]$ Plasma Criterion #1
- Above is a criterion for an ionized gas to be considered a plasma.
- o Behaves like neutral gas is criterion is not true.
- Plasma oscillations can be driven by natural thermal motions of electrons $(E=1/2k_BT_e)$. Work by displacement of electron by Δx is and using $E = -ne\Delta x / \varepsilon_0$

$$W = \int F dx$$
$$= \int_0^{\Delta x} eE(x) dx$$
$$= \frac{e^2 n \Delta x^2}{2\varepsilon_0}$$

Plasma Criteria

o Equating work done by displacement with average energy in thermal agitation

$$\frac{e^2 n \Delta x^2}{2\varepsilon_0} \approx \frac{1}{2} k_{\scriptscriptstyle B} T_{\scriptscriptstyle e}$$

• The maximum distance an electron can travel is $\Delta x_{max} = \lambda_D$, where

$$\lambda_{D} = \sqrt{\frac{\varepsilon_{0} k_{B} T_{e}}{e^{2} n}} \qquad Debye \ Length$$

o Gas is considered a plasma if length scale of system is larger than Debye Length:

$$\lambda_D << L$$
 Plasma Criterion #2

- Debye Length is spatial scale over which charge neutrality is violated by spontaneous fluctuations.
- O Debye Number is defined as $N_D = n \left[4\pi \lambda_D^3 / 3 \right]$

Debye Shielding

- o Plasmas do not contain strong electric fields as they reorganize to shield from them.
- o Plasma oscillations are excited to assert *macroscopic* neutrality.
- o If plasma subjected to external *E*, free charges redistribute so that plasma is shielded.
- Suppose immerse test particle +Q within a plasma with $n_i = n_e = n$
- ο At t = 0, electric potential is $\Phi(r) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r}$
- As time progresses, electrons are attracted, while ions are repelled. As $m_i >> m_e$ neglect motion of ions.
- At t >> 0, $n_e > n$ and a new potential is set up, with charge density:

$$\rho = e(n_e - n_i).$$

Debye Shielding

New potential evaluated using Poisson's equation:

$$\nabla^2 \Phi(r) = -\frac{\rho}{\varepsilon_0} = -\frac{e(n_e - n_i)}{\varepsilon_0}$$

o In presence of potential, electron number density is

$$n(r) = ne^{-e\Phi(r)/k_{\rm B}T_{\rm e}}$$

o Subbing this into Poisson's equation in spherical coordinates.

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d\Phi}{dr}\right) = -\frac{en}{\varepsilon_0}\left[e^{-e\Phi/k_BT_{\epsilon}} - 1\right]$$

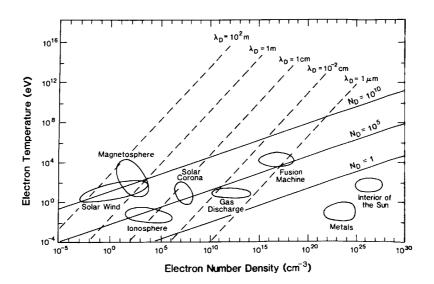
○ For $|e\Phi| << k_B T_e$ can us Taylor expansion: $e^x \approx 1 + x =>$

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\Phi}{dr} \right) \approx \left[\frac{ne^2}{\varepsilon_0 k_B T_a} \right] \Phi(r) = \frac{1}{\lambda_0^2} \Phi(r)$$

where λ_D is the *Debye shielding length*.

Debye Shielding

- Solution to previous is $\Phi(r) = \left[\frac{1}{4\pi\varepsilon_0} \frac{Q}{r} \right] e^{-r/\lambda_D}$
- As $r \to 0$, potential is that of a free charge in free space, but for $r >> \lambda_D$ potential falls exponentially.
- Coloumb force is long range in free space, but only extends to Debye length in plasma.
- o For positive test charge, shielding cloud contains excess of electrons.
- $\circ \quad \text{Recall} \quad \lambda_{D} = \sqrt{\frac{\varepsilon_{0} k_{B} T_{e}}{e^{2} n}}$


=> size of shielding cloud increases as electron temperature as electrons can overcome Coulomb attraction. Also, λ_D is smaller for denser plasma because more electrons available to populate shielding cloud.

Debye Shielding

Useful numerical expression for Debye length:

$$\lambda_{p} \cong 69\sqrt{T_{e}/n}$$

where T_e is in K and n is in m⁻³.

The Plasma Parameter

• The typical number of particles in a Deybe sphere is given by *the plasma* parameter:

$$\Lambda = 4\pi n \lambda_{D}^{3}$$

$$= \frac{1.38 \times 10^{6} T_{e}^{3/2}}{n^{1/2}}$$

- O Defined as N_D in Inan & Gollowski and usually given as argument of *Coulomb Logarithm* (log(Λ)).
- o If Λ <<1, the Debye sphere is sparsely populated, corresponding to a strongly coupled plasma.
- Strongly coupled plasmas tend to be cold and dense, whereas weakly coupled tend to be diffuse and hot.

The Plasma Parameter

	Plasma parameter magnitude				
Description	Λ<<1	۸>>1			
Coupling	Strongly coupled plasma	Weakly coupled plasma			
Debye sphere	Sparsely populated	Densely populated			
Electrostatic influence	Almost continuously	Occasional			
Typical characteristic	Cold and dense	Hot and diffuse			
Examples	Solid-density laser ablation plasmas Very "cold" "high pressure" arc discharge Inertial fusion experiments White dwarfs / neutron stars atmospheres	Ionospheric physics Magnetic fusion devices Space plasma physics Plasma ball			

Collisions

- Neutral particles have quite small collision cross sections. As Coulomb force is long range, charged particles are more frequent.
- \circ A *collisional plasma* is one where $\lambda_{mfp} << L$ where L is the observational length scale and $\lambda_{mfp} = 1/\sigma n$ is the mean free path.
- The effective Coulomb cross-section is $\sigma = \pi r_c^2$
- O An electron will be affected by a neighbouring ion if the Coulomb potential is of the order of the electron thermal energy: $e^{2} \qquad 3 \quad \pi$

$$\frac{e^2}{4\pi\varepsilon_0 r_c} \approx \frac{3}{2} k_{\scriptscriptstyle B} T$$

$$=> \sigma = \pi \left(\frac{e^2}{6\pi k_{\scriptscriptstyle B} \varepsilon_0}\right)^2 \frac{1}{T^2}$$

o At $T = 10^6$ K, $\sigma \sim 10^{-22}$ m², which is much larger than the geometric nuclear cross-section of 10^{-33} m².

Collisions

o In terms of the plasma parameter, the collision frequency (v = n e v) is

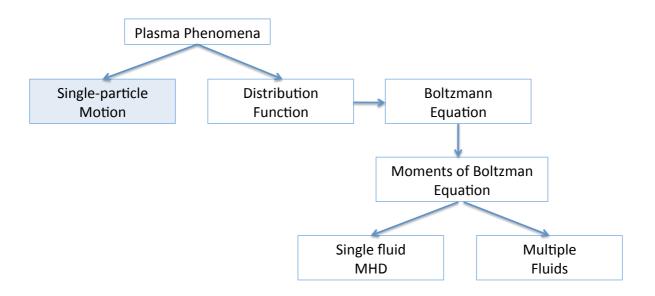
$$v \approx \frac{\omega_{p}}{64\pi} \frac{\ln \Lambda}{\Lambda}$$

where $ln(\Lambda)$ is the Coulomb logarithm. Used as Λ is large, but $10 < ln(\Lambda) < 30$.

- o In a weakly coupled plasma, $v \le \omega_p =$ collisions to not effect plasma oscillations
- o More rigorously, it can be shown that

$$v \approx \frac{\sqrt{2}\omega_p^4}{64\pi m_e} \left(\frac{k_B T}{m_e}\right)^{-3/2} \ln \Lambda$$

 Thus, diffuse, high temperature plasmas tend to be collisionless. See page 156 of Inan & Golkowski.


Examples of key plasma parameters

	$n(m^{-3})$	T(eV)	$\omega_p(\text{sec}^{-1})$	$\lambda_{\text{D}}(m)$	٨
Interstellar	10 ⁶	10-2	6×10^{4}	0.7	4 × 10 ⁶
Solar Chromosphere	10 ¹⁸	2	6×10^{10}	5×10^{-6}	2×10^{3}
Solar Wind (1AU)	10 ⁷	10	2×10^{5}	7	5×10^{10}
Ionosphere	10 ¹²	0.1	6×10^{7}	2×10^{-3}	1×10^{5}
Arc discharge	10 ²⁰	1	6×10^{11}	7×10^{-7}	5×10^{2}
Tokamak	10 ²⁰	10^{4}	6×10^{11}	7×10^{-5}	4×10^{8}
Inertial Confinement	10 ²⁸	10^{4}	6×10^{15}	7×10^{-9}	5×10^{4}

Table 1.1: Key parameters for some typical weakly coupled plasmas.

^{*} From Plasma Physics by R. Fitzpatrick

Next Lecture: Single-particle Motion

