
!"#$%&'()%"*#%*+,-./-*+01.2(.*3+456789*
!"#$%&"'()'*+,-".#'*/&&0&/-,'

Dr. Peter T. Gallagher 
Astrophysics Research Group 

Trinity College Dublin 

:&2-;-)(*!"<-$2-"(=*%>*/-?"=)(*/%/="#*

o  Gyrating particle constitutes an electric current loop with a dipole moment: 

o  The dipole moment is conserved, i.e., is invariant. Called the first adiabatic 
invariant. 

o  µ = constant even if B varies spatially or temporally. If B varies, then vperp varies to 
keep µ = constant => v|| also changes. 

o  Gives rise to magnetic mirroring. Seen in planetary magnetospheres, magnetic 
bottles, coronal loops, etc. 

o  Right is geometry of mirror  
 from Chen, Page 30. 
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o  Consider B-field pointed primarily in z-direction and whose magnitude varies in z-
direction. If field is axisymmetric, B! = 0 and d/d! = 0. 

o  This has cylindrical symmetry, so write 

o  How does this configuration give rise to a force that can trap a charged particle? 

o  Can obtain Br from       . In cylindrical polar coordinates:  

o  If               is given at r = 0 and does not vary much with r, then  
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o  Now have Br in terms of BZ, which we can use to find Lorentz force on particle.  

o  The components of Lorentz force are: 

o  As B! = 0, two terms vanish and terms (1) and (2) give rise to Larmor gyration. 
Term (3) vanishes on the axis and causes a drift in radial direction. Term (4) is 
therefore the one of interest.  

o  Substituting from Eqn. 5.1: 
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o  Averaging over one gyro-orbit, and putting               and r = rL 

o  This is called the mirror force, where -/+ arises because particles of opposite charge 
orbit the field in opposite directions.  

o  Above is normally written:  

 or     where     is the magnetic moment.  

o  In 3D, this can be generalised to: 

 where F|| is the mirror force parallel to B and ds is a line element along B.  
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o  As particle moves into regions of stronger or weaker B, Larmor radius changes, but 
µ remains invariant. 

o  To prove this, consider component of equation of motion along B: 

o  Multiplying by v||: 

o  Then,  

o  The particle’s energy must be conserved, so 

o  Using 
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o  Using Eqn 5.2, 

o  As B is not equal to 0, this implies that 

o  That is, µ = constant in time (invariant). 

o   µ  is known as the first adiabatic invariant of the particle orbit.   

o  As a particle moves from a weak-field to a strong-field region, it sees B increasing 
and therefore vperp must increase in order to keep µ constant. Since total energy 
must remain constant, v|| must decrease. 

o  If B is high enough, v|| eventually -> 0 and particle is reflected back to weak-field. 

! 

"µ
dB
dt

+
d
dt

µB( ) = 0

"µ
dB
dt

+ µ
dB
dt

+B dµ
dt

= 0

! 

=> B dµ
dt

= 0

! 

dµ
dt

= 0

B%".=C'="(=*%>*2"<-$2-"(=*%>*1D*@-?"=)(*/2$$%$2"?*

o  Consider B0 and B1 in the weak- and strong-field regions. Associated speeds are v0 
and v1.  

o  The conservation of µ implies that 

o  So, as B increases, the perpendicular component of the particle velocity increases: 
particle moves more and more perpendicular to B. 

o  However, since we have E=0, the total particle energy cannot increase. Thus as v⊥ 
increases, v|| must decrease. The particle slows down in its motion along the field. 

o  If field convergence is strong enough, at some point the particle may have v|| = 0.   
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o  Say that at B1 we have v1,|| = 0. From conservation of energy: 

o  Using                            we can write 

o  But sin(!) = v⊥/ v0 where !  is the pitch angle. 

o  Therefore 

o  Particles with smaller ! will mirror in regions of higher B. If ! is too small,  
 B1>> B0 and particle does not mirror. 
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o  Mirror ratio is defined 

o  So, the smallest ! of a confined particle is 

o  This defines  region in velocity space in the shape of a cone, called the loss cone. 
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o  Particles are confined in a mirror with ratio 
Rm if they have ! > !m. 

o  Otherwise they escape the mirror. That 
portion of velocity space occupied by 
escaping particles is called the loss-cone. 

o  The opening angle of the loss cone is not 
dependent on mass or charge. Electrons and 
protons are lost equally, if the plasma is 
collisionless. 

o  Coulomb collisions scatter charged particles, changing their pitch angle. Thus a 
particle which originally lay outside the loss cone can be scattered into it. 

o  Electrons are more readily Coulomb-scattered than ions; thus electrons will be 
scattered out of the mirror trap more quickly. 
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o  Early magnetic confinement machines involved designs using magnetic mirror. The 
original idea was based on the fact that an electric current generates a magnetic 
field, and that the currents flowing in the plasma will "pinch" the plasma, 
containing it within its own magnetic field. 
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o  A particle outside the loss-cone in a field structure which is convergent at both ends 
(such as the Earth’s magnetic field) will be reflected by both mirrors and bounce 
between them. 

o  Superposed on this bounce will be drift motions. For example, particle orbits in the 
Earth’s magnetic field are a combination of gyromotion, bounce motion, and grad-B 
drift. 
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o  Consider an initially Maxwellian distribution of particles inside a magnetic 
o  mirror. In velocity space, the distribution is spherical. 

o  As particles exit via the loss cone, the distribution becomes anisotropic 

o  The distribution will try to relax back to an isotropic one (higher entropy); one of 
the ways it does this is by radiating energy in the form of plasma waves. These 
waves are somewhat more complex than cold plasma wave - they involve the 
distribution functions of particles. They are generally called kinetic plasma waves, 
driven by a kinetic instability. 


