Introduction to Plasma Physics (PY5012) Lecture 5: Magnetic Mirroring

Dr. Peter T. Gallagher
Astrophysics Research Group
Trinity College Dublin

Adiabatic Invariance of magnetic moment

- Gyrating particle constitutes an electric current loop with a dipole moment:

$$
\mu=\frac{1 / 2 m v_{\perp}^{2}}{B}
$$

- The dipole moment is conserved, i.e., is invariant. Called the first adiabatic invariant.
- $\mu=$ constant even if B varies spatially or temporally. If B varies, then $v_{\text {perp }}$ varies to keep $\mu=$ constant $=>v_{\|}$also changes.
- Gives rise to magnetic mirroring. Seen in planetary magnetospheres, magnetic bottles, coronal loops, etc.
- Right is geometry of mirror from Chen, Page 30.

Magnetic mirroring

- Consider B-field pointed primarily in z-direction and whose magnitude varies in z direction. If field is axisymmetric, $B_{\theta}=0$ and $d / d \theta=0$.
- This has cylindrical symmetry, so write $\mathbf{B}=B_{r} \hat{\mathbf{r}}+B_{z} \hat{\mathbf{z}}$
- How does this configuration give rise to a force that can trap a charged particle?
- Can obtain B_{r} from $\nabla \cdot \mathbf{B}=0$. In cylindrical polar coordinates:

$$
\begin{aligned}
& \frac{1}{r} \frac{\partial}{\partial r}\left(r B_{r}\right)+\frac{\partial B_{z}}{\partial z}=0 \\
& =>\frac{\partial}{\partial r}\left(r B_{r}\right)=-r \frac{\partial B_{z}}{\partial z}
\end{aligned}
$$

- If $\partial B_{z} / \partial z$ is given at $r=0$ and does not vary much with r, then

$$
\begin{align*}
& r B_{r}=-\int_{0}^{r} r \frac{\partial B_{z}}{\partial z} d r \approx-\frac{1}{2} r^{2}\left[\frac{\partial B_{z}}{\partial z}\right]_{r=0} \\
& B_{r}=-\frac{1}{2} r\left[\frac{\partial B_{z}}{\partial z}\right]_{r=0} \tag{5.1}
\end{align*}
$$

Magnetic mirroring

- Now have $\mathbf{B}_{\mathbf{r}}$ in terms of $\mathbf{B}_{\mathbf{Z}}$, which we can use to find Lorentz force on particle.
- The components of Lorentz force are:

$$
\begin{equation*}
\mathbf{F}_{r}=q\left(v_{\theta} B_{z}-v_{z} B_{\theta}^{\prime}\right) \tag{1}
\end{equation*}
$$

$$
\begin{array}{r}
\mathbf{F}_{\theta}=q\left(-v_{r} B_{z}+v_{z} B_{r}\right) \\
(2) \quad(3)
\end{array}
$$

$$
\begin{equation*}
\mathbf{F}_{z}=q\left(v_{r} P_{\theta}^{\prime}-v_{\theta} B_{r}\right) \tag{4}
\end{equation*}
$$

- As $B_{\theta}=0$, two terms vanish and terms (1) and (2) give rise to Larmor gyration. Term (3) vanishes on the axis and causes a drift in radial direction. Term (4) is therefore the one of interest.
- Substituting from Eqn. 5.1: $\quad \mathbf{F}_{z}=-q v_{\theta} B_{r}$

$$
=\frac{q v_{\theta} r}{2} \frac{\partial B_{z}}{\partial z}
$$

Magnetic mirroring

- Averaging over one gyro-orbit, and putting $v_{\theta}=\mp v_{\perp}$ and $r=r_{L}$

$$
\mathbf{F}_{z}=\mp \frac{q \nu_{1} r_{L}}{2} \frac{\partial B_{z}}{\partial z}
$$

- This is called the mirror force, where -/+ arises because particles of opposite charge orbit the field in opposite directions.
- Above is normally written: $\mathbf{F}_{z}=\mp \frac{1}{2} q \frac{v_{\perp}^{2}}{\omega_{c}} \frac{\partial B_{z}}{\partial z}$

$$
=-\frac{1}{2} \frac{m v_{\perp}^{2}}{B} \frac{\partial B_{z}}{\partial z}
$$

or $\quad \mathbf{F}_{z}=-\mu \frac{\partial B_{z}}{\partial z} \quad$ where $\quad \mu \equiv \frac{1 / 2 m v_{\perp}^{2}}{B} \quad$ is the magnetic moment.

- In 3D, this can be generalised to:

$$
\mathbf{F}_{\|}=-\mu \frac{d B}{d \mathbf{s}}=-\mu \nabla_{\|} B
$$

where $\mathbf{F}_{\|}$is the mirror force parallel to \mathbf{B} and $d \mathbf{s}$ is a line element along \mathbf{B}.

First adiabatic invariant

- As particle moves into regions of stronger or weaker B, Larmor radius changes, but μ remains invariant.
- To prove this, consider component of equation of motion along B:

$$
m \frac{d v_{\|}}{d t}=-\mu \frac{d B}{d s}
$$

- Multiplying by $v_{\|}$:

$$
m v_{\mathrm{U}} \frac{d v_{\mathrm{U}}}{d t}=-\mu v_{\mathrm{U}} \frac{d B}{d s}
$$

- Then,

$$
\begin{align*}
\frac{d}{d t}\left(\frac{1}{2} m v_{\|}^{2}\right) & =-\mu \frac{d s}{d t} \frac{d B}{d s} \\
& =-\mu \frac{d B}{d t} \tag{5.2}
\end{align*}
$$

- The particle's energy must be conserved, so

$$
\frac{d}{d t}\left(\frac{1}{2} m v_{\|}^{2}+\frac{1}{2} m v_{\perp}^{2}\right)=0
$$

- Using $\mu \equiv \frac{1 / 2 m v_{\perp}^{2}}{B}$

$$
\frac{d}{d t}\left(\frac{1}{2} m v_{\|}^{2}+\mu B\right)=0
$$

First adiabatic invariant

- Using Eqn 5.2,

$$
\begin{array}{r}
-\mu \frac{d B}{d t}+\frac{d}{d t}(\mu B)=0 \\
-\mu \frac{d B}{d t}+\mu \frac{d B}{d t}+B \frac{d \mu}{d t}=0 \\
\Rightarrow B \frac{d \mu}{d t}=0
\end{array}
$$

- As B is not equal to 0 , this implies that $\frac{d \mu}{d t}=0$
- That is, $\mu=$ constant in time (invariant).
- μ is known as the first adiabatic invariant of the particle orbit.
- As a particle moves from a weak-field to a strong-field region, it sees B increasing and therefore $v_{\text {perp }}$ must increase in order to keep μ constant. Since total energy must remain constant, $v_{\| \mid}$must decrease.
- If B is high enough, $v_{\| \mid}$eventually $->0$ and particle is reflected back to weak-field.

Consequence of invariance of μ : Magnetic mirroring

- Consider B_{0} and B_{I} in the weak- and strong-field regions. Associated speeds are v_{0} and v_{l}.

- The conservation of μ implies that $\quad \mu=\frac{m v_{0}^{2}}{2 B_{0}}=\frac{m v_{1}^{2}}{2 B_{1}}$
- So, as B increases, the perpendicular component of the particle velocity increases: particle moves more and more perpendicular to B.
- However, since we have $E=0$, the total particle energy cannot increase. Thus as v_{\perp} increases, $v_{\| \mid}$must decrease. The particle slows down in its motion along the field.
- If field convergence is strong enough, at some point the particle may have $v_{\| \mid}=0$.

Consequence of invariance of μ : Magnetic mirroring

- Say that at B_{I} we have $v_{l, \|}=0$. From conservation of energy:

$$
v_{1}^{2}=v_{1, L}^{2}=v_{0}^{2}
$$

- Using $\mu=\frac{m v_{0}^{2}}{2 B_{0}}=\frac{m v_{1}^{2}}{2 B_{1}}$ we can write

$$
\frac{B_{0}}{B_{1}}=\frac{v_{0, \perp}^{2}}{v_{1, \perp}^{2}}=\frac{v_{0, \perp}^{2}}{v_{0}^{2}}
$$

- But $\sin (\theta)=v_{\perp} / v_{0}$ where θ is the pitch angle.
- Therefore $\frac{B_{0}}{B_{1}}=\sin ^{2}(\theta)$
- Particles with smaller θ will mirror in regions of higher B. If θ is too small, $B_{I} \gg B_{0}$ and particle does not mirror.

Consequence of invariance of μ : Magnetic mirroring

- Mirror ratio is defined

$$
R_{m}=\frac{B_{m}}{B_{0}}
$$

- So, the smallest θ of a confined particle is

$$
\sin ^{2}(\theta)=\frac{B_{0}}{B_{m}}=\frac{1}{R_{m}}
$$

- This defines region in velocity space in the shape of a cone, called the loss cone.

The loss cone

- Particles are confined in a mirror with ratio R_{m} if they have $\theta>\theta_{m}$.
- Otherwise they escape the mirror. That portion of velocity space occupied by escaping particles is called the loss-cone.
- The opening angle of the loss cone is not dependent on mass or charge. Electrons and protons are lost equally, if the plasma is
 collisionless.
- Coulomb collisions scatter charged particles, changing their pitch angle. Thus a particle which originally lay outside the loss cone can be scattered into it.
- Electrons are more readily Coulomb-scattered than ions; thus electrons will be scattered out of the mirror trap more quickly.

Bounce motion between two mirrors

- Early magnetic confinement machines involved designs using magnetic mirror. The original idea was based on the fact that an electric current generates a magnetic field, and that the currents flowing in the plasma will "pinch" the plasma, containing it within its own magnetic field.

Bounce motion between two mirrors

- A particle outside the loss-cone in a field structure which is convergent at both ends (such as the Earth's magnetic field) will be reflected by both mirrors and bounce between them.

- Superposed on this bounce will be drift motions. For example, particle orbits in the Earth's magnetic field are a combination of gyromotion, bounce motion, and grad-B drift.

Loss cone distributions and instabilities

- Consider an initially Maxwellian distribution of particles inside a magnetic
- mirror. In velocity space, the distribution is spherical.
- As particles exit via the loss cone, the distribution becomes anisotropic

- The distribution will try to relax back to an isotropic one (higher entropy); one of the ways it does this is by radiating energy in the form of plasma waves. These waves are somewhat more complex than cold plasma wave - they involve the distribution functions of particles. They are generally called kinetic plasma waves, driven by a kinetic instability.

