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o  A particle’s dynamical state can be specified using its position and velocity: 

r = ( x, y, z ) and v  = ( vx, vy, vz ) 

o  Combining position and velocity information, gives particle’s position in phase 
space: 

( r, v ) = ( x, y, z, vx, vy, vz ) 

o  The state space for position and momentum  
 or velocity is a 6D phase space  

o  Volume of a small element of velocity space 
 is dvxdvydvz = d3v = dv 

o  Volume element in phase space is d3rd3v 
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o  Single-particle approach has limited application where collective motion not 
important. Non-zero electric fields in a plasma generally arise self-consistently, so 
must consider collective motion of many plasma particles.   

o  State of plasma described by velocity distribution function:  

f( x, y, z, vx, vy, vz ,t )  particles / m3 

o  Gives the number of particle per unit volume as a position r and a time t with 
velocities vx, vy, vz. Has 7 independent variables, defining 6D phase space. 

o  Number of particles in a phase space volume d3r d3v is 

dn = f( r, v, t ) dx dy dz dvx dvy dvz = f( r, v, t ) d3r d3v  

o  The total number of particles is therefore  

! 

n = f (r,v,t)d 3rd 3v"#
#$
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o  Figures below from Chen. 
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o  Let f(x) be any function that is defined and positive on an interval  [a,b]. The 
moments of this function are defined as 

o  In particular case that distribution is a probability density, p(x), then 

o  Higher order moments correspond to skewness and kurtosis.   

  

! 

M0 = f (x)dxa
b"

M1 = xf (x)dxa
b"

M2 = x2 f (x)dxa
b"

!

Mn = xn f (x)dxa
b"

! 

M0 =1

M1 = xp(x)dx = x =mean(x)a
b"

M2 = x2p(x)dx = variance(x)a
b"

Zeroth moment 

First moment 

Second moment 

nth moment 



C%/;"#.*%<*@2.#$2A')%"*B'"()%"*

o  Velocity distribution function gives microscopic description of statistical 
information on particles. However, most important use is in determining 
macroscopic (i.e., ensemble averages) values such as as density, current, etc. 

o  Zeroth order moment of f( r, v, t ) is 

o  First order moment is the bulk velocity: 

o  Charge and current density of species (s) can be expressed in using moments: 

o  Second order moment relates to kinetic energy:  

! 

n(r,t) = f (r,v,t)d 3v"#
#$

! 

u =
1
n
vf (r,v,t)d 3v"

! 

1
2
mv2 =

1
n
1
2
mv2 f (r,v,t)d 3v"

! 

" = qsns
s
#

! 

j= qsns
s
" u
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o  Evolution of f(v, r, t) is described by the Boltzmann Equation. 

o  Consider particles entering and leaving a small volume of phase space. As r and v 
are independent, can treat separately.  

o  Position: Number of particles leaving d3r per second  
 through its surface dS is 

o  Velocity: Number of particles leaving d3v per second  
 through its surface dSv is 

o  So, the net number of particles leaving the phase space volume d3rd3v is 

dS  

v 

! 

f (r,v,t)˙ r " #dS = f (r,v,t)v" #dS

! 

f (r,v,t)˙ v " #dSv = f (r,v,t)a" #dSv

! 

f (r,v,t)v" #dSd 3v+ f (r,v,t)a" #dSvd
3r
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o  The rate of change of particle number in d3rd3v is: 

o  As total number of particles in d3rd3v is conserved: 

o  Recall Gauss’ Divergence Theorem: 

o  Can now change integral over dS to d3r: 

 or 

! 

"
"t

f# d 3rd 3v[ ] = $ fv# %dSd 3v+ fa# %dSvd
3r[ ]

! 

"
"t

f# d 3rd 3v[ ]+ fv# $dSd 3v+ fa# $dSvd
3r[ ] = 0

! 

(" #F)V$ dV = (F #n)dSS$

! 

"
"t

f# d 3rd 3v[ ]+ $r %( fv)# d 3rd 3v+ $v %( fa)# d 3vd 3r[ ] = 0

"
"t

f# d 3rd 3v[ ]+
"
"r
%( fv)# d 3rd 3v+

"
"v

%( fa)# d 3vd 3r& 
' ( 

) 
* + 
= 0
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o  Now, the phase space volume can be made arbitrarily small, such that the 
integrands are constant within the volume. Therefore, we have 

o  But since r and v are independent variables, we can take v outside d/dr and 
similarly for a, we can write 

o  Replacing a with F / m, we have 

              (6.1) 

o  This is the collisionless Boltzman equation. Can be used in hot plasmas where 
collisions can be neglected. 

! 

"f
"t

+
"
"r
#( fv)+ "

"v
#( fa) = 0

! 

"f
"t

+v # "f
"r

+a # "f
"v

= 0

! 

"f
"t

+v # "f
"r

+
F
m
#
"f
"v

= 0
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o  Previous equation written in terms of generalised force. For plasmas, Lorentz force 
is of interest, so  

o  This is called the Vlasov equation. Can also be written 

               (6.2) 

o  This is one of the most important and widely used equations in kinetic theory of 
plasmas. 

o  Maxwell’s equations for E and B and the Vlasov equation represent a complete set 
of self-consistent equations.  

! 

"f
"t

+v # "f
"r

+
q
m
[E+ (v $B)] # "f

"v
= 0

! 

"f
"t

+v #$f +
q
m
[E+ (v %B)] # "f

"v
= 0
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o  Distribution function f( r, v, t) depends on 7 independent variables. Total time 
derivative of f is: 

o  This can be written as  

o  To appreciate meaning of this equation, consider f = f(r, t): 

o  Called the  convective derivative or Lagrangian derivative. Second term gives 
change in f measured by an observed moving in the fluid frame. 

! 

df
dt

= "
f
"t

+ "
f
"x
"x
"t

+"
f
"y
"y
"t

+"
f
"z
"z
"t

+ "
f

"vz

"vz
"t

+ "f
"vz

"vz
"t

+ "f
"vz

"vz
"t

! 

df
dt

= "
f
"t

+v # "f
"r

+a # "f
"v

! 

df
dt

= "
f
"t

+v # "f
"r

$
Df
Dt
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o  A plasma particle’s state (r, v) evolves in phase space. In absence of collisions, 
points move along continuous corves and f obeys the continuity equation: 

o  Called Liouville Equation.  

o  The Liouville equation describes the time evolution of the phase space distribution 
function. Liouvilles’ theorem states that flows in phase space are incompressible. 

o  In Cartesian coordinates, equation above reduces to  

o  Which is in the form of the collisionless Boltzmann equation. The Boltzmann and 
Vlasov equations follow from Liouville’s equation. 

! 

"f
"t

+#r,v $ ( ˙ r , ˙ v ) f[ ] = 0

! 

"f
"t

+ "
"r
#( f˙ r )+ "

"v
#( f ˙ v ) = 0

"f
"t

+ v # "f
"r

+ a # "f
"v

= 0
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o  In the presence of collisions, the Boltzmann equation (Eqn 6.1) can be written  

 where the term on the right is the time rate of change of f due to collisions. This is 
the collisional Boltzmann equation. 

o  Similarly, the Vlasov equation (Eqn. 6.2) can be written 

o  This is the collisional Vlasov equation. Describes change in particle distribution due 
to short-range interactions.  

o  When there are collisions with neutral atoms: 

 where fn is the neutral atom distribution function and ! is the collision time. Called 
Krook collision model. 

! 

"f
"t

+v #$f +
F
m
#
"f
"v

=
"f
"t
% 
& 
' 

( 
) 
* 
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! 

"f
"t

+v #$f +
q
m
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"v
=
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"t
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