Introduction to Plasma Physics (PY5012) Lecture 6: Kinetic Theory

Dr. Peter T. Gallagher Astrophysics Research Group Trinity College Dublin

Hierarchy of plasma phenomena

Particle Phase Space

o A particle's dynamical state can be specified using its position and velocity:

$$\mathbf{r} = (x, y, z)$$
 and $\mathbf{v} = (v_x, v_y, v_z)$

 Combining position and velocity information, gives particle's position in phase space:

$$(\mathbf{r}, \mathbf{v}) = (x, y, z, v_x, v_y, v_z)$$

- The state space for position and momentum or velocity is a 6D phase space
- Volume of a small element of velocity space is $dv_x dv_y dv_z = d^3v = d\mathbf{v}$
- Volume element in phase space is d^3rd^3v

Velocity Distribution Functions

- Single-particle approach has limited application where collective motion not important. Non-zero electric fields in a plasma generally arise self-consistently, so must consider collective motion of many plasma particles.
- State of plasma described by *velocity distribution function*:

$$f(x, y, z, v_x, v_y, v_z, t)$$
 particles / m³

- O Gives the number of particle per unit volume as a position \mathbf{r} and a time t with velocities v_x , v_y , v_z . Has 7 independent variables, defining 6D phase space.
- Number of particles in a phase space volume $d^3r d^3v$ is

$$dn = f(r, v, t) dx dy dz dv_x dv_y dv_z = f(r, v, t) d^3r d^3v$$

• The total number of particles is therefore $n = \int_{-\infty}^{\infty} f(\mathbf{r}, \mathbf{v}, t) d^3 r d^3 v$

Velocity Distribution Functions

o Figures below from Chen.

Contours of constant f for a drifting Maxwellian distribution and a "beam" Fi

Mathematical Aside: Moments

O Let f(x) be any function that is defined and positive on an interval [a,b]. The moments of this function are defined as

Zeroth moment $M_0 = \int_a^b f(x) dx$

First moment $M_1 = \int_a^b x f(x) dx$

Second moment $M_2 = \int_a^b x^2 f(x) dx$

nth moment $M_n = \int_a^b x^n f(x) dx$

o In particular case that distribution is a probability density, p(x), then

 $M_0 = 1$ $M_1 = \int_a^b x p(x) dx = \langle x \rangle = \text{mean}(x)$ $M_2 = \int_a^b x^2 p(x) dx = \text{variance}(x)$

o Higher order moments correspond to skewness and kurtosis.

Moments of Distribution Function

- O Velocity distribution function gives *microscopic* description of statistical information on particles. However, most important use is in determining *macroscopic* (i.e., ensemble averages) values such as as density, current, etc.
- Zeroth order moment of $f(\mathbf{r}, \mathbf{v}, t)$ is $n(\mathbf{r}, t) = \int_{-\infty}^{\infty} f(\mathbf{r}, \mathbf{v}, t) d^3 v$
- First order moment is the bulk velocity: $\mathbf{u} = \frac{1}{n} \int \mathbf{v} f(\mathbf{r}, \mathbf{v}, t) d^3 v$
- Charge and current density of species (s) can be expressed in using moments:

$$\rho = \sum_{s} q_{s} n_{s}$$

$$\mathbf{j} = \sum_{s} q_{s} n_{s} \mathbf{u}$$

o Second order moment relates to kinetic energy:

$$\left\langle \frac{1}{2}m\mathbf{v}^2 \right\rangle = \frac{1}{n} \int \frac{1}{2}m\mathbf{v}^2 f(\mathbf{r}, \mathbf{v}, t)d^3v$$

Derivation of Boltzmann Equation

- \circ Evolution of $f(\mathbf{v}, \mathbf{r}, t)$ is described by the *Boltzmann Equation*.
- Consider particles entering and leaving a small volume of phase space. As r and v are independent, can treat separately.
- O Position: Number of particles leaving d^3r per second through its surface $d\mathbf{S}$ is

$$\int f(\mathbf{r}, \mathbf{v}, t) \dot{\mathbf{r}} \cdot d\mathbf{S} = \int f(\mathbf{r}, \mathbf{v}, t) \mathbf{v} \cdot d\mathbf{S}$$

• Velocity: Number of particles leaving d^3v per second through its surface $d\mathbf{S}_{v}$ is

$$\int f(\mathbf{r}, \mathbf{v}, t) \dot{\mathbf{v}} \cdot d\mathbf{S}_{v} = \int f(\mathbf{r}, \mathbf{v}, t) \mathbf{a} \cdot d\mathbf{S}_{v}$$

• So, the net number of particles leaving the phase space volume d^3rd^3v is

$$\int f(\mathbf{r}, \mathbf{v}, t)\mathbf{v} \cdot d\mathbf{S}d^3v + \int f(\mathbf{r}, \mathbf{v}, t)\mathbf{a} \cdot d\mathbf{S}_v d^3r$$

Derivation of Boltzmann Equation

• The rate of change of particle number in d^3rd^3v is:

$$\frac{\partial}{\partial t} \left[\int f d^3 r d^3 v \right] = - \left[\int f \mathbf{v} \cdot d\mathbf{S} d^3 v + \int f \mathbf{a} \cdot d\mathbf{S}_v d^3 r \right]$$

• As total number of particles in d^3rd^3v is conserved:

$$\frac{\partial}{\partial t} \left[\int f d^3 r d^3 v \right] + \left[\int f \mathbf{v} \cdot d\mathbf{S} d^3 v + \int f \mathbf{a} \cdot d\mathbf{S}_v d^3 r \right] = 0$$

- Recall Gauss' Divergence Theorem: $\int_V (\nabla \cdot \mathbf{F}) dV = \int_S (\mathbf{F} \cdot \mathbf{n}) dS$
- Can now change integral over $d\mathbf{S}$ to d^3r :

$$\frac{\partial}{\partial t} \left[\int f d^3 r d^3 v \right] + \left[\int \nabla_r \cdot (f \mathbf{v}) d^3 r d^3 v + \int \nabla_v \cdot (f \mathbf{a}) d^3 v d^3 r \right] = 0$$
or
$$\frac{\partial}{\partial t} \left[\int f d^3 r d^3 v \right] + \left[\int \frac{\partial}{\partial \mathbf{r}} \cdot (f \mathbf{v}) d^3 r d^3 v + \int \frac{\partial}{\partial \mathbf{v}} \cdot (f \mathbf{a}) d^3 v d^3 r \right] = 0$$

Derivation of Boltzmann Equation

 Now, the phase space volume can be made arbitrarily small, such that the integrands are constant within the volume. Therefore, we have

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial \mathbf{r}} \cdot (f\mathbf{v}) + \frac{\partial}{\partial \mathbf{v}} \cdot (f\mathbf{a}) = 0$$

O But since \mathbf{r} and \mathbf{v} are independent variables, we can take \mathbf{v} outside $d/d\mathbf{r}$ and similarly for \mathbf{a} , we can write

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \mathbf{a} \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$

 \circ Replacing **a** with **F** / m, we have

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{\mathbf{F}}{m} \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$
 (6.1)

 This is the *collisionless Boltzman equation*. Can be used in hot plasmas where collisions can be neglected.

The Vlasov Equation

 Previous equation written in terms of generalised force. For plasmas, Lorentz force is of interest, so

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q}{m} [\mathbf{E} + (\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$

o This is called the *Vlasov equation*. Can also be written

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{q}{m} [\mathbf{E} + (\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$
 (6.2)

- This is one of the most important and widely used equations in kinetic theory of plasmas.
- o Maxwell's equations for **E** and **B** and the Vlasov equation represent a complete set of self-consistent equations.

Convective Derivative in Phase Space

O Distribution function $f(\mathbf{r}, \mathbf{v}, \mathbf{t})$ depends on 7 independent variables. Total time derivative of f is:

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t} + \frac{\partial f}{\partial v_z} \frac{\partial v_z}{\partial t} + \frac{\partial f}{\partial v_z} \frac{\partial v_z}{\partial t} + \frac{\partial f}{\partial v_z} \frac{\partial v_z}{\partial t}$$

o This can be written as

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \mathbf{a} \cdot \frac{\partial f}{\partial \mathbf{v}}$$

O To appreciate meaning of this equation, consider $f = f(\mathbf{r}, t)$:

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} \equiv \frac{Df}{Dt}$$

• Called the *convective derivative* or *Lagrangian derivative*. Second term gives change in *f* measured by an observed moving in the fluid frame.

Phase Space Evolution

O A plasma particle's state (\mathbf{r}, \mathbf{v}) evolves in phase space. In absence of collisions, points move along continuous corves and f obeys the continuity equation:

$$\frac{\partial f}{\partial t} + \nabla_{\mathbf{r}, \mathbf{v}} \cdot \left[(\dot{\mathbf{r}}, \dot{\mathbf{v}}) f \right] = 0$$

- o Called Liouville Equation.
- The Liouville equation describes the time evolution of the phase space distribution function. Liouvilles' theorem states that flows in phase space are incompressible.
- o In Cartesian coordinates, equation above reduces to

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial \mathbf{r}} \cdot (f\dot{\mathbf{r}}) + \frac{\partial}{\partial \mathbf{v}} \cdot (f\dot{\mathbf{v}}) = 0$$
$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} + \mathbf{a} \cdot \frac{\partial f}{\partial \mathbf{v}} = 0$$

• Which is in the form of the collisionless Boltzmann equation. The Boltzmann and Vlasov equations follow from Liouville's equation.

Collisional Boltzmann and Vlasov Equations

o In the presence of collisions, the Boltzmann equation (Eqn 6.1) can be written

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{\mathbf{F}}{m} \cdot \frac{\partial f}{\partial \mathbf{v}} = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

where the term on the right is the time rate of change of f due to collisions. This is the *collisional Boltzmann equation*.

o Similarly, the Vlasov equation (Eqn. 6.2) can be written

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{q}{m} [\mathbf{E} + (\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}} = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

- This is the *collisional Vlasov equation*. Describes change in particle distribution due to short-range interactions.
- When there are collisions with neutral atoms: $\left(\frac{\partial f}{\partial t}\right)_{coll} \approx \frac{f_n f}{\tau}$

where f_n is the neutral atom distribution function and τ is the collision time. Called Krook collision model.

Hierarchy of plasma phenomena

