Introduction to Plasma Physics (PY5012) Lecture 6: Kinetic Theory

Dr. Peter T. Gallagher
Astrophysics Research Group
Trinity College Dublin

Hierarchy of plasma phenomena

Particle Phase Space

- A particle's dynamical state can be specified using its position and velocity:

$$
\mathbf{r}=(x, y, z) \text { and } \mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right)
$$

- Combining position and velocity information, gives particle's position in phase space:

$$
(\mathbf{r}, \mathbf{v})=\left(x, y, z, v_{x}, v_{y}, v_{z}\right)
$$

- The state space for position and momentum or velocity is a 6 D phase space
- Volume of a small element of velocity space is $d v_{x} d v_{y} d v_{z}=d^{3} v=d \mathbf{v}$
- Volume element in phase space is $d^{3} r d^{3} v$

Velocity Distribution Functions

- Single-particle approach has limited application where collective motion not important. Non-zero electric fields in a plasma generally arise self-consistently, so must consider collective motion of many plasma particles.
- State of plasma described by velocity distribution function:

$$
f\left(x, y, z, v_{x}, v_{y}, v_{z}, t\right) \quad \text { particles } / \mathrm{m}^{3}
$$

- Gives the number of particle per unit volume as a position \mathbf{r} and a time t with velocities v_{x}, v_{y}, v_{z}. Has 7 independent variables, defining 6D phase space.
- Number of particles in a phase space volume $d^{3} r d^{3} v$ is

$$
d n=f(r, v, t) d x d y d z d v_{x} d v_{y} d v_{z}=f(r, v, t) d^{3} r d^{3} v
$$

- The total number of particles is therefore $n=\int_{-\infty}^{\infty} f(\mathbf{r}, \mathbf{v}, t) d^{3} r d^{3} v$

Velocity Distribution Functions

- Figures below from Chen.

Contours of
distribation.

A spatially varying one-dimensional distribation $f\left(x, v_{2}\right)$.

Contours of constant f for a drifting Maxwellian distribution and a "beam" FI

Mathematical Aside: Moments

- Let $f(x)$ be any function that is defined and positive on an interval $[a, b]$. The moments of this function are defined as

Zeroth moment	M_{0}	$=\int_{a}^{b} f(x) d x$
First moment	M_{1}	$=\int_{a}^{b} x f(x) d x$
Second moment	M_{2}	$=\int_{a}^{b} x^{2} f(x) d x$
	\vdots	
$\mathrm{n}^{\text {th }}$ moment	M_{n}	$=\int_{a}^{b} x^{n} f(x) d x$

- In particular case that distribution is a probability density, $p(x)$, then

$$
\begin{aligned}
& M_{0}=1 \\
& M_{1}=\int_{a}^{b} x p(x) d x=\langle x\rangle=\operatorname{mean}(x) \\
& M_{2}=\int_{a}^{b} x^{2} p(x) d x=\operatorname{variance}(x)
\end{aligned}
$$

Higher order moments correspond to skewness and kurtosis.

Moments of Distribution Function

- Velocity distribution function gives microscopic description of statistical information on particles. However, most important use is in determining macroscopic (i.e., ensemble averages) values such as as density, current, etc.
- Zeroth order moment of $f(\mathbf{r}, \mathbf{v}, t)$ is

$$
n(\mathbf{r}, t)=\int_{-\infty}^{\infty} f(\mathbf{r}, \mathbf{v}, t) d^{3} v
$$

- First order moment is the bulk velocity: $\quad \mathbf{u}=\frac{1}{n} \int \mathbf{v} f(\mathbf{r}, \mathbf{v}, t) d^{3} v$
- Charge and current density of species (s) can be expressed in using moments:

$$
\begin{aligned}
& \rho=\sum_{s} q_{s} n_{s} \\
& \mathbf{j}=\sum_{s} q_{s} n_{s} \mathbf{u}
\end{aligned}
$$

- Second order moment relates to kinetic energy:

$$
\left\langle\frac{1}{2} m \mathbf{v}^{2}\right\rangle=\frac{1}{n} \int \frac{1}{2} m \mathbf{v}^{2} f(\mathbf{r}, \mathbf{v}, t) d^{3} v
$$

Derivation of Boltzmann Equation

- Evolution of $f(\mathbf{v}, \mathbf{r}, t)$ is described by the Boltzmann Equation.
- Consider particles entering and leaving a small volume of phase space. As \mathbf{r} and \mathbf{v} are independent, can treat separately.
- Position: Number of particles leaving $d^{3} r$ per second through its surface $d \mathbf{S}$ is

$$
\int f(\mathbf{r}, \mathbf{v}, t) \dot{\mathbf{r}} \cdot d \mathbf{S}=\int f(\mathbf{r}, \mathbf{v}, t) \mathbf{v} \cdot d \mathbf{S}
$$

- Velocity: Number of particles leaving $d^{3} v$ per second through its surface $d \mathbf{S}_{v}$ is

$$
\int f(\mathbf{r}, \mathbf{v}, t) \dot{\mathbf{v}} \cdot d \mathbf{S}_{v}=\int f(\mathbf{r}, \mathbf{v}, t) \mathbf{a} \cdot d \mathbf{S}_{v}
$$

- So, the net number of particles leaving the phase space volume $d^{3} r d^{3} v$ is

$$
\int f(\mathbf{r}, \mathbf{v}, t) \mathbf{v} \cdot d \mathbf{S} d^{3} v+\int f(\mathbf{r}, \mathbf{v}, t) \mathbf{a} \cdot d \mathbf{S}_{v} d^{3} r
$$

Derivation of Boltzmann Equation

- The rate of change of particle number in $d^{3} r d^{3} v$ is:

$$
\frac{\partial}{\partial t}\left[\int f d^{3} r d^{3} v\right]=-\left[\int f \mathbf{v} \cdot d \mathbf{S} d^{3} v+\int f \mathbf{a} \cdot d \mathbf{S}_{v} d^{3} r\right]
$$

- As total number of particles in $d^{3} r d^{3} v$ is conserved:

$$
\frac{\partial}{\partial t}\left[\int f d^{3} r d^{3} v\right]+\left[\int f \mathbf{v} \cdot d \mathbf{S} d^{3} v+\int f \mathbf{a} \cdot d \mathbf{S}_{v} d^{3} r\right]=0
$$

- Recall Gauss' Divergence Theorem: $\int_{V}(\nabla \cdot \mathbf{F}) d V=\int_{S}(\mathbf{F} \cdot \mathbf{n}) d S$
- Can now change integral over $d \mathbf{S}$ to $d^{3} r$:

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left[\int f d^{3} r d^{3} v\right]+\left[\int \nabla_{r} \cdot(f \mathbf{v}) d^{3} r d^{3} v+\int \nabla_{v} \cdot(f \mathbf{a}) d^{3} v d^{3} r\right] \\
\text { or } & \frac{\partial}{\partial t}\left[\int f d^{3} r d^{3} v\right]+\left[\int \frac{\partial}{\partial \mathbf{r}} \cdot(f \mathbf{v}) d^{3} r d^{3} v+\int \frac{\partial}{\partial \mathbf{v}} \cdot(f \mathbf{a}) d^{3} v d^{3} r\right]=0
\end{aligned}
$$

Derivation of Boltzmann Equation

- Now, the phase space volume can be made arbitrarily small, such that the integrands are constant within the volume. Therefore, we have

$$
\frac{\partial f}{\partial t}+\frac{\partial}{\partial \mathbf{r}} \cdot(f \mathbf{v})+\frac{\partial}{\partial \mathbf{v}} \cdot(f \mathbf{a})=0
$$

- But since \mathbf{r} and \mathbf{v} are independent variables, we can take \mathbf{v} outside $d / d \mathbf{r}$ and similarly for \mathbf{a}, we can write

$$
\frac{\partial f}{\partial t}+\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}}+\mathbf{a} \cdot \frac{\partial f}{\partial \mathbf{v}}=0
$$

- Replacing a with \mathbf{F} / m, we have

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}}+\frac{\mathbf{F}}{m} \cdot \frac{\partial f}{\partial \mathbf{v}}=0 \tag{6.1}
\end{equation*}
$$

- This is the collisionless Boltzman equation. Can be used in hot plasmas where collisions can be neglected.

The Vlasov Equation

- Previous equation written in terms of generalised force. For plasmas, Lorentz force is of interest, so

$$
\frac{\partial f}{\partial t}+\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}}+\frac{q}{m}[\mathbf{E}+(\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}}=0
$$

- This is called the Vlasov equation. Can also be written

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\mathbf{v} \cdot \nabla f+\frac{q}{m}[\mathbf{E}+(\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}}=0 \tag{6.2}
\end{equation*}
$$

- This is one of the most important and widely used equations in kinetic theory of plasmas.
- Maxwell's equations for \mathbf{E} and \mathbf{B} and the Vlasov equation represent a complete set of self-consistent equations.

Convective Derivative in Phase Space

- Distribution function $f(\mathbf{r}, \mathbf{v}, \mathrm{t})$ depends on 7 independent variables. Total time derivative of f is:

$$
\begin{aligned}
\frac{d f}{d t} & =\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial t} \\
& +\frac{\partial f}{\partial v_{z}} \frac{\partial v_{z}}{\partial t}+\frac{\partial f}{\partial v_{z}} \frac{\partial v_{z}}{\partial t}+\frac{\partial f}{\partial v_{z}} \frac{\partial v_{z}}{\partial t}
\end{aligned}
$$

- This can be written as

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}}+\mathbf{a} \cdot \frac{\partial f}{\partial \mathbf{v}}
$$

- To appreciate meaning of this equation, consider $f=f(\mathbf{r}, \mathrm{t})$:

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} \equiv \frac{D f}{D t}
$$

- Called the convective derivative or Lagrangian derivative. Second term gives change in f measured by an observed moving in the fluid frame.

Phase Space Evolution

- A plasma particle's state (\mathbf{r}, \mathbf{v}) evolves in phase space. In absence of collisions, points move along continuous corves and f obeys the continuity equation:

$$
\frac{\partial f}{\partial t}+\nabla_{\mathbf{r}, \mathrm{v}} \cdot[(\dot{\mathbf{r}}, \dot{\mathbf{v}}) f]=0
$$

- Called Liouville Equation.
- The Liouville equation describes the time evolution of the phase space distribution function. Liouvilles' theorem states that flows in phase space are incompressible.
- In Cartesian coordinates, equation above reduces to

$$
\begin{array}{r}
\frac{\partial f}{\partial t}+\frac{\partial}{\partial \mathbf{r}} \cdot(f \mathbf{r})+\frac{\partial}{\partial \mathbf{v}} \cdot(f \mathbf{\mathbf { v }})=0 \\
\frac{\partial f}{\partial t}+\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}}+\mathbf{a} \cdot \frac{\partial f}{\partial \mathbf{v}}=0
\end{array}
$$

- Which is in the form of the collisionless Boltzmann equation. The Boltzmann and Vlasov equations follow from Liouville's equation.

Collisional Boltzmann and Vlasov Equations

- In the presence of collisions, the Boltzmann equation (Eqn 6.1) can be written

$$
\frac{\partial f}{\partial t}+\mathbf{v} \cdot \nabla f+\frac{\mathbf{F}}{m} \cdot \frac{\partial f}{\partial \mathbf{v}}=\left(\frac{\partial f}{\partial t}\right)_{\text {coll }}
$$

where the term on the right is the time rate of change of f due to collisions. This is the collisional Boltzmann equation.

- Similarly, the Vlasov equation (Eqn. 6.2) can be written

$$
\frac{\partial f}{\partial t}+\mathbf{v} \cdot \nabla f+\frac{q}{m}[\mathbf{E}+(\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}}=\left(\frac{\partial f}{\partial t}\right)_{\text {coll }}
$$

- This is the collisional Vlasov equation. Describes change in particle distribution due to short-range interactions.
- When there are collisions with neutral atoms: $\left(\frac{\partial f}{\partial t}\right)_{\text {coll }} \approx \frac{f_{n}-f}{\tau}$ where f_{n} is the neutral atom distribution function and τ is the collision time. Called Krook collision model.

Hierarchy of plasma phenomena

