Introduction to Plasma Physics (PY5012)
Lecture 6: Kinetic Theory

Dr. Peter T. Gallagher
Astrophysics Research Group

Trinity College Dublin

Hierarchy of plasma phenomena

Plasma Phenomena

— >~

Single-particle Distribution Boltzmann
Motion Function Equation

v

%
Moments of Boltzmann
Equation

—

Single fluid Multiple
MHD Fluids




Particle Phase Space

A particle’s dynamical state can be specified using its position and velocity:
r=(x,yz)andv =(v, v, v,)

Combining position and velocity information, gives particle’s position in phase

space:

(I',V):(x,y,Z, vxy vy} Vz)

The state space for position and momentum oy
or velocity is a 6D phase space

Volume of a small element of velocity space y
is dv,dv,dv. = d’v = dv dv,

Volume element in phase space is d’rd°v

Velocity Distribution Functions

Single-particle approach has limited application where collective motion not
important. Non-zero electric fields in a plasma generally arise self-consistently, so
must consider collective motion of many plasma particles.

State of plasma described by velocity distribution function:
f(x, 3,2, v,v,v,,t) particles / m?

Gives the number of particle per unit volume as a position r and a time ¢ with
velocities v,, v,, v,. Has 7 independent variables, defining 6D phase space.

Number of particles in a phase space volume d°r d’v is
dn=f(r,v,t)dxdydzdv.dv,dv.=f(r, v t) &r dv

The total number of particles is therefore n= [ f(r,v,t)d Srd3y



Velocity Distribution Functions

o Figures below from Chen.

fylv) folv,}

Vx

Examples of non-Maxwelllan distribation functions.

A spatially varying one-dimensional distribation f(x, v, )

v, DRIFTING MAXWELLIAN

Contours of constant f for a driftiag Maxwellian distribution and s “beam"  FI
in two dimensions.

Mathematical Aside: Moments

o Let f{x) be any function that is defined and positive on an interval /a,b]. The
moments of this function are defined as

Zeroth moment M, = f;’ f(x)dx
First moment M, = ffxf (x)dx

Second moment M, = [ f X% f(x)dx

nth moment M, = ffx" f(x)dx
o In particular case that distribution is a probability density, p(x), then

M, =1
M, = [P xp(x)dx = (x) = mean(x)

M,={ 5 x? p(x)dx = variance(x)

o Higher order moments correspond to skewness and kurtosis.



Moments of Distribution Function

Velocity distribution function gives microscopic description of statistical
information on particles. However, most important use is in determining
macroscopic (i.e., ensemble averages) values such as as density, current, etc.

Zeroth order moment of f(r, v, t ) is n(rp)= [ f(ry ,t)d3v

First order moment is the bulk velocity: u= 111 Jvf(r,v,)d 3y

Charge and current density of species (s) can be expressed in using moments:
P =24

j = E qnu

Second order moment relates to kinetic energy:

<1mv2> = lflmvzf(r,v,t)d%
2 n-2

Derivation of Boltzmann Equation

Evolution of f(v, r, ¢) is described by the Boltzmann Equation.

Consider particles entering and leaving a small volume of phase space. As r and v
are independent, can treat separately.

Position: Number of particles leaving d°r per second
through its surface dS is

[fxvDF-dS=[f(rvi)v-dS

) dS

.
.“
.
*

Velocity: Number of particles leaving d3v per second

through its surface dS, is
Jf@yv)v-dS, =[f(r,vit)a-dS,

So, the net number of particles leaving the phase space volume d3rd?v is

[ fev.v-dSd*v+ [ f(rv.)a-dS,d’r



Derivation of Boltzmann Equation

The rate of change of particle number in d°rd3v is:
4 313 3 3
5[ffd rd v]=—[ffv-de v+ [ fa-dS,d r]

As total number of particles in d°7d3v is conserved:
j[ffd3rd3v]+[ffv dSd*v+ [ fa-dS,d’r]=0

t
Recall Gauss’ Divergence Theorem: [, (V-F)dV = [((F-n)dS
Can now change integral over dS to d’r:
;[ffd3rd3v]+[fvr (N rdv+ 9, -(faxdvd®r]= 0
t

or

jt[ffd3rd3v]+[f:r-(fv)d3rd3v+fi-(fa)d3vd3r}= 0

Derivation of Boltzmann Equation

Now, the phase space volume can be made arbitrarily small, such that the
integrands are constant within the volume. Therefore, we have

¥, 9. 9 (fa)=
o o (fV)+0,'V (fa)=0

But since r and v are independent variables, we can take v outside d/dr and
similarly for a, we can write

+Vv

T
ot or ov

Replacing a with F/ m, we have

i-ﬁ-V'i‘l‘E'@C—O

o o moov (6.1)

This is the collisionless Boltzman equation. Can be used in hot plasmas where
collisions can be neglected.



The Vlasov Equation

Previous equation written in terms of generalised force. For plasmas, Lorentz force
1s of interest, so

Ty T dgevxmy)- L oo
ot o m ov

This is called the Viasov equation. Can also be written

¥ yovrs d I _
&t+v Vf+m[E+(V><B)] pe 0 (6.2)

This is one of the most important and widely used equations in kinetic theory of
plasmas.

Maxwell’s equations for E and B and the Vlasov equation represent a complete set
of self-consistent equations.

Convective Derivative in Phase Space

Distribution function f{'r, v, t) depends on 7 independent variables. Total time
derivative of f'is:

o _ A ox Ay, o &

dt ot oxadt dyot dzot

L L L
v, gt v, o v, or

This can be written as @=i+v~i+a-i
dt ot or v

To appreciate meaning of this equation, consider f = f(r, t):

d _of .o _Df
dt ot or Dt

Called the convective derivative or Lagrangian derivative. Second term gives
change in f measured by an observed moving in the fluid frame.



Phase Space Evolution

A plasma particle’s state (r, v) evolves in phase space. In absence of collisions,
points move along continuous corves and f'obeys the continuity equation:

ZWH [G.9)f]=0

Called Liouville Equation.

The Liouville equation describes the time evolution of the phase space distribution
function. Liouvilles’ theorem states that flows in phase space are incompressible.

In Cartesian coordinates, equation above reduces to

P9 (hye 9 (Fry=

o o WD (=0
@+V-i+a-i=0
ot or v

Which is in the form of the collisionless Boltzmann equation. The Boltzmann and
Vlasov equations follow from Liouville’s equation.

Collisional Boltzmann and Vlasov Equations

In the presence of collisions, the Boltzmann equation (Eqn 6.1) can be written

7 vroy (7]
ot m ov ot coll

where the term on the right is the time rate of change of f due to collisions. This is
the collisional Boltzmann equation.

Similarly, the Vlasov equation (Eqn. 6.2) can be written

T vovred A _(7T
ot Y Vf+m[E+(VXB)] ov ((%)coll

This is the collisional Vlasov equation. Describes change in particle distribution due
to short-range interactions.

o

When there are collisions with neutral atoms: (07) =~
t coll

o=t

T

where f, is the neutral atom distribution function and z is the collision time. Called
Krook collision model.
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