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Moments of Boltzmann-Vlasov Equation

Under certain assumptions not necessary to obtain actual distribution function if
only interested in the macroscopic values.

Instead of solving Boltzmann or Vlasov equation for distribution function and
integrating, can take integrals over collisional Boltzmann-Vlasov equation and solve
for the quantities of interest.
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(7.1)

Called “taking the moments of the Boltzmann-Vlasov equation” .

Resulting equations known as the macroscopic transport equations, and form the
foundation of plasma fluid theory.

Results in derivation of the equations of magnetohydrodynamics (MHD).

Zeroth-order Moment: Continuity Equation

Lowest order moment obtained by integrating Eqn. 7.1:
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Since v and r are independent, v is not effected by gradient operator:
fv-Vfdv=V-[vfdv
From before, the first order moment of distribution function is

u= lfvf(r,v,t)dv
n

therefore,
Jv-Vfdv =V (nu) (7.3)



Zeroth-order Moment: Continuity Equation

For the third term, consider E and B separately. E term vanishes as
JE L av=1 2 (Byav=[fE-dS=0  (7.4a)
av av

using Gauss’ Divergence Theorem in velocity space. The surface area in velocity
space goes as V2. As v -> oo, f ->0 more quickly than S ->c0 (e.g., ftypically goes as
1/v*. A Maxwellian goes as e ). Integral to v = infinity therefore goes to zero.

Using vector identity V-:-(aA)=A-Va+aV-A thev x B term is

f(va)-ZZ’dV=fjv'(fva)dV—ff;:’-(va)dv
=ff(va)-dS—fij-(va)dv=0 (7.4b)

The first term on right again vanishes as f/->0 more quickly than S ->o0. The
second vanishes as v X B is perpendicular to d/dv.

Zeroth-order Moment: Continuity Equation

Last term is on right hand side of Eqn. 7.1:

f(?:)cozzdv ) jf[fde] -0 (7:3)

This is assuming that the total number of particles remains constant as collisions
proceed.

Combining Eqns. 7.2 — 7.5 yields the equation of continuity:
M ¥ () =0 (1.6)
ot

First term represents rate of change of particle concentration within a volume, while
the second term represents the divergence of particles of the flow of particles out of
the volume.

Eqn. 7.6 is the first of the equations of magnetohydrodynamics (MHD). Eqn. 7.6 is a
continuity equation for mass or charge transport if we multiply m or gq.



First-order Moment: Momentum Transport

Re-write Eqn. 7.1:
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Next moment of the Boltzmann equation is obtained by multiplying Eqn. 7.1 by mv
and integrating over dv.

mfvolfdv+mfv(v-V)fdv+qfv[E+(va)]'idv =fmv(&f) dav (7.7)
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The right-hand side is the change of the momentum due to collisions and will be
given the term P;; .

The first term gives mfv idv = mi [ vfdv
ot ot

J(nua) (7.8)
ot

=m

First-order Moment: Momentum Transport

Next consider third term:
fV[E+(va)]-j{]dv=f;v-[fv(E+va)]dv
—ffvjv'(E+va)dV
—ff(E+VxB)';Vvdv

The first to integrals on the right vanish for same reasons as before.

Therefore have, ¢[Vv[E+(vxB)] -j{dv =—q[ f(E+vxB)v
= -gn(E+uxB) (7.9)

To evaluate the second integral of Eqn. 7.7, use fact that v does not depend on
gradient operator:

Jv(v-V)fdv=[V-(fvv)dv
=V- [ fvvdv



First-order Moment: Momentum Transport

Since the average of a quantity is 1/ times its weighted integral over v, we have

V-[fwdv=V-(n<vv>)
Now separate v into average fluid velocity u and a thermal velocity w:
V=u+w

Since u is already and average, we have
V:(n<vv>)=V:-(nm)+V-(n<ww>)+2V-(nu<w>) (7.10)

The average thermal velocity is zero => <w > =0 and

P=mn<ww> (7.11)

is the stress tensor. Also called the pressure tensor or dyad.

P is a measure of the thermal motion in a fluid. If all particles moved with same
steady velocity v, then w = 0 and thus P =0 (i.e., a cold plasma).

First-order Moment: Momentum Transport

Remaining term in Eqn. 7.7 can be written

V:(nuu)=uV-(nu)+n(u-V)u (7.12)

Collecting Eqns. 7.8, 7.9, 7.11 and 7.12, we have

m;(nu)+muV-(nu)+mn(u-V)u+V-P—qn(E+u><B)=P,-j
t

Combining the first two terms, we obtain the fluid equation of motion:

mn

@+(u-V)u
ot

=qn(E+u><B)—V-P+Pij (7.13)

This describes flow of momentum — also called momentum transport equation.

Eqn. 7.13 is a statement of conservation of momentum and represents force balance
on components of plasma. On right are the Lorentz force, pressure, and collisions.



Summary of Moments of Vlasov Equation

o Equations of MHD and multi-fluid theory are obtained by taking the moments of
the Vlasov equation, corresponding to mass, momentum and energy.

J (Vlasov equation) dv => conservation of mass

f (Vlasov equation) v dv => conservation of momentum

J (Vlasov equation) v%/2 dv => conservation of energy

o Zeroth moment of the Vlasov equation results in the MHD mass continuity
equation (Eqn. 7.6).

o First moment of Vlasov equation gives MHD momentum equation (Eqn. 7.13).

o Second moment of Vlasov equation give MHD energy transport equation.
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