Introduction to Plasma Physics (PY5012)
 Lecture 7: Moments of Boltzmann-Vlasov Equation

Dr. Peter T. Gallagher
Astrophysics Research Group
Trinity College Dublin

Hierarchy of plasma phenomena

Moments of Boltzmann-Vlasov Equation

- Under certain assumptions not necessary to obtain actual distribution function if only interested in the macroscopic values.
- Instead of solving Boltzmann or Vlasov equation for distribution function and integrating, can take integrals over collisional Boltzmann-Vlasov equation and solve for the quantities of interest.

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\mathbf{v} \cdot \nabla f+\frac{q}{m}[\mathbf{E}+(\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}}=\left(\frac{\partial f}{\partial t}\right)_{\text {coll }} \tag{7.1}
\end{equation*}
$$

- Called "taking the moments of the Boltzmann-Vlasov equation".
- Resulting equations known as the macroscopic transport equations, and form the foundation of plasma fluid theory.
- Results in derivation of the equations of magnetohydrodynamics (MHD).

Zeroth-order Moment: Continuity Equation

- Lowest order moment obtained by integrating Eqn. 7.1:

$$
\int \frac{\partial f}{\partial t} d \mathbf{v}+\int \mathbf{v} \cdot \nabla f d \mathbf{v}+\int \frac{q}{m}[\mathbf{E}+(\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}} d \mathbf{v}=\int\left(\frac{\partial f}{\partial t}\right)_{\text {coll }} d \mathbf{v}
$$

- The first term gives $\int \frac{\partial f}{\partial t} d \mathbf{v}=\frac{\partial}{\partial t} \int f d \mathbf{v}=\frac{\partial n}{\partial t}$
- Since \mathbf{v} and \mathbf{r} are independent, \mathbf{v} is not effected by gradient operator:

$$
\int \mathbf{v} \cdot \nabla f d \mathbf{v}=\nabla \cdot \int \mathbf{v} f d \mathbf{v}
$$

From before, the first order moment of distribution function is

$$
\mathbf{u}=\frac{1}{n} \int \mathbf{v} f(\mathbf{r}, \mathbf{v}, t) d \mathbf{v}
$$

therefore,

$$
\begin{equation*}
\int \mathbf{v} \cdot \nabla f d \mathbf{v}=\nabla \cdot(n \mathbf{u}) \tag{7.3}
\end{equation*}
$$

Zeroth-order Moment: Continuity Equation

- For the third term, consider \mathbf{E} and \mathbf{B} separately. \mathbf{E} term vanishes as

$$
\begin{equation*}
\int \mathbf{E} \cdot \frac{\partial f}{\partial \mathbf{v}} d \mathbf{v}=\int \frac{\partial}{\partial \mathbf{v}} \cdot(f \mathbf{E}) d \mathbf{v}=\int f \mathbf{E} \cdot d \mathbf{S}=0 \tag{7.4a}
\end{equation*}
$$

using Gauss' Divergence Theorem in velocity space. The surface area in velocity space goes as v^{2}. As $v->\infty, f->0$ more quickly than $\mathbf{S}->\infty$ (e.g., f typically goes as $1 / v^{2}$. A Maxwellian goes as $e^{-v^{2}}$). Integral to $\mathbf{v}=$ infinity therefore goes to zero.

- Using vector identity $\nabla \cdot(a \mathbf{A})=\mathbf{A} \cdot \nabla a+a \nabla \cdot \mathbf{A}$ the $\mathbf{v} \times \mathbf{B}$ term is

$$
\begin{align*}
\int(\mathbf{v} \times \mathbf{B}) \cdot \frac{\partial f}{\partial \mathbf{v}} d \mathbf{v} & =\int \frac{\partial}{\partial \mathbf{v}} \cdot(f \mathbf{v} \times \mathbf{B}) d \mathbf{v}-\int f \frac{\partial}{\partial \mathbf{v}} \cdot(\mathbf{v} \times \mathbf{B}) d \mathbf{v} \\
& =\int f(\mathbf{v} \times \mathbf{B}) \cdot d \mathbf{S}-\int f \frac{\partial}{\partial \mathbf{v}} \cdot(\mathbf{v} \times \mathbf{B}) d \mathbf{v}=0 \tag{7.4b}
\end{align*}
$$

- The first term on right again vanishes as $f->0$ more quickly than $\mathbf{S}->\infty$. The second vanishes as $\mathbf{v} \times \mathbf{B}$ is perpendicular to $\partial / \partial \mathbf{v}$.

Zeroth-order Moment: Continuity Equation

- Last term is on right hand side of Eqn. 7.1:

$$
\begin{equation*}
\int\left(\frac{\partial f}{\partial t}\right)_{\text {coll }} d \mathbf{v}=\frac{\partial}{\partial t}\left[\int f d \mathbf{v}\right]=0 \tag{7.5}
\end{equation*}
$$

- This is assuming that the total number of particles remains constant as collisions proceed.
- Combining Eqns. $7.2-7.5$ yields the equation of continuity:

$$
\begin{equation*}
\frac{\partial n}{\partial t}+\nabla \cdot(n \mathbf{u})=0 \tag{7.6}
\end{equation*}
$$

- First term represents rate of change of particle concentration within a volume, while the second term represents the divergence of particles of the flow of particles out of the volume.
- Eqn. 7.6 is the first of the equations of magnetohydrodynamics (MHD). Eqn. 7.6 is a continuity equation for mass or charge transport if we multiply m or q.

First-order Moment: Momentum Transport

- Re-write Eqn. 7.1:

$$
\frac{\partial f}{\partial t}+\mathbf{v} \cdot \nabla f+\frac{q}{m}[\mathbf{E}+(\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}}=\left(\frac{\partial f}{\partial t}\right)_{c o l l}
$$

- Next moment of the Boltzmann equation is obtained by multiplying Eqn. 7.1 by $m \mathbf{v}$ and integrating over $\mathrm{d} \mathbf{v}$.

$$
\begin{equation*}
m \int \mathbf{v} \frac{\partial f}{\partial t} d \mathbf{v}+m \int \mathbf{v}(\mathbf{v} \cdot \nabla) f d \mathbf{v}+q \int \mathbf{v}[\mathbf{E}+(\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}} d \mathbf{v}=\int m \mathbf{v}\left(\frac{\partial f}{\partial t}\right)_{\text {coll }} d \mathbf{v} \tag{7.7}
\end{equation*}
$$

- The right-hand side is the change of the momentum due to collisions and will be given the term \mathbf{P}_{ij}.
- The first term gives $\quad m \int \mathbf{v} \frac{\partial f}{\partial t} d \mathbf{v}=m \frac{\partial}{\partial t} \int \mathbf{v} f d \mathbf{v}$

$$
\begin{equation*}
=m \frac{\partial(n \mathbf{u})}{\partial t} \tag{7.8}
\end{equation*}
$$

First-order Moment: Momentum Transport

- Next consider third term:

$$
\begin{aligned}
\int \mathbf{v}[\mathbf{E}+(\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}} d \mathbf{v} & =\int \frac{\partial}{\partial \mathbf{v}} \cdot[f \mathbf{v}(\mathbf{E}+\mathbf{v} \times \mathbf{B})] d \mathbf{v} \\
& -\int f \mathbf{v} \frac{\partial}{\partial \mathbf{v}} \cdot(\mathbf{E}+\mathbf{v} \times \mathbf{B}) d \mathbf{v} \\
& -\int f(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \cdot \frac{\partial}{\partial \mathbf{v}} \mathbf{v} d \mathbf{v}
\end{aligned}
$$

- The first to integrals on the right vanish for same reasons as before.
- Therefore have, $\quad q \int \mathbf{v}[\mathbf{E}+(\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}} d \mathbf{v}=-q \int f(\mathbf{E}+\mathbf{v} \times \mathbf{B}) d \mathbf{v}$

$$
\begin{equation*}
=-q n(\mathbf{E}+\mathbf{u} \times \mathbf{B}) \tag{7.9}
\end{equation*}
$$

- To evaluate the second integral of Eqn. 7.7, use fact that \mathbf{v} does not depend on gradient operator:

$$
\begin{aligned}
\int \mathbf{v}(\mathbf{v} \cdot \nabla) f d \mathbf{v} & =\int \nabla \cdot(f \mathbf{v} \mathbf{v}) d \mathbf{v} \\
& =\nabla \cdot \int f \mathbf{v} \mathbf{v} d \mathbf{v}
\end{aligned}
$$

First-order Moment: Momentum Transport

- Since the average of a quantity is $1 / n$ times its weighted integral over \mathbf{v}, we have

$$
\nabla \cdot \int f \mathbf{v} \mathbf{v} d \mathbf{v}=\nabla \cdot(n<\mathbf{v} \mathbf{v}>)
$$

- Now separate \mathbf{v} into average fluid velocity \mathbf{u} and a thermal velocity \mathbf{w} :

$$
\mathbf{v}=\mathbf{u}+\mathbf{w}
$$

- Since \mathbf{u} is already and average, we have

$$
\begin{equation*}
\nabla \cdot(n<\mathbf{v} \mathbf{v}>)=\nabla \cdot(n \mathbf{u u})+\nabla \cdot(n<\mathbf{w w}>)+2 \nabla \cdot(n \mathbf{u}<\mathbf{w}>) \tag{7.10}
\end{equation*}
$$

- The average thermal velocity is zero $=><\mathbf{w}>=0$ and

$$
\begin{equation*}
\mathbf{P}=m n<\mathbf{w w}\rangle \tag{7.11}
\end{equation*}
$$

is the stress tensor. Also called the pressure tensor or dyad.

- \mathbf{P} is a measure of the thermal motion in a fluid. If all particles moved with same steady velocity \mathbf{v}, then $\mathbf{w}=0$ and thus $\mathbf{P}=0$ (i.e., a cold plasma).

First-order Moment: Momentum Transport

- Remaining term in Eqn. 7.7 can be written

$$
\begin{equation*}
\nabla \cdot(n \mathbf{u} \mathbf{u})=\mathbf{u} \nabla \cdot(n \mathbf{u})+n(\mathbf{u} \cdot \nabla) \mathbf{u} \tag{7.12}
\end{equation*}
$$

- Collecting Eqns. 7.8, 7.9, 7.11 and 7.12, we have

$$
m \frac{\partial}{\partial t}(n \mathbf{u})+m \mathbf{u} \nabla \cdot(n \mathbf{u})+m n(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla \cdot \mathbf{P}-q n(\mathbf{E}+\mathbf{u} \times \mathbf{B})=\mathbf{P}_{i j}
$$

- Combining the first two terms, we obtain the fluid equation of motion:

$$
\begin{equation*}
m n\left[\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}\right]=q n(\mathbf{E}+\mathbf{u} \times \mathbf{B})-\nabla \cdot \mathbf{P}+\mathbf{P}_{i j} \tag{7.13}
\end{equation*}
$$

- This describes flow of momentum - also called momentum transport equation.
- Eqn. 7.13 is a statement of conservation of momentum and represents force balance on components of plasma. On right are the Lorentz force, pressure, and collisions.

Summary of Moments of Vlasov Equation

- Equations of MHD and multi-fluid theory are obtained by taking the moments of the Vlasov equation, corresponding to mass, momentum and energy.
\int (Vlasov equation) $d \mathbf{v}=>$ conservation of mass
\int (Vlasov equation) $\mathbf{v} d \mathbf{v}=>$ conservation of momentum
\int (Vlasov equation) $\mathbf{v}^{2} / 2 d \mathbf{v}=>$ conservation of energy
- Zeroth moment of the Vlasov equation results in the MHD mass continuity equation (Eqn. 7.6).
- First moment of Vlasov equation gives MHD momentum equation (Eqn. 7.13).
- Second moment of Vlasov equation give MHD energy transport equation.

Hierarchy of plasma phenomena

