Introduction to Plasma Physics (PY5012) Lecture 7: Moments of Boltzmann-Vlasov Equation

Dr. Peter T. Gallagher Astrophysics Research Group Trinity College Dublin

Hierarchy of plasma phenomena

Moments of Boltzmann-Vlasov Equation

- Under certain assumptions not necessary to obtain actual distribution function if only interested in the macroscopic values.
- Instead of solving Boltzmann or Vlasov equation for distribution function and integrating, can take integrals over *collisional Boltzmann-Vlasov* equation and solve for the quantities of interest.

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{q}{m} [\mathbf{E} + (\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}} = \left(\frac{\partial f}{\partial t}\right)_{coll}$$
(7.1)

- o Called "taking the moments of the Boltzmann-Vlasov equation".
- Resulting equations known as the macroscopic transport equations, and form the foundation of plasma fluid theory.
- o Results in derivation of the *equations of magnetohydrodynamics (MHD)*.

Zeroth-order Moment: Continuity Equation

Lowest order moment obtained by integrating Eqn. 7.1:

$$\int \frac{\partial f}{\partial t} d\mathbf{v} + \int \mathbf{v} \cdot \nabla f d\mathbf{v} + \int \frac{q}{m} [\mathbf{E} + (\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}} d\mathbf{v} = \int \left(\frac{\partial f}{\partial t} \right)_{coll} d\mathbf{v}$$

- The first term gives $\int \frac{\partial f}{\partial t} d\mathbf{v} = \frac{\partial}{\partial t} \int f d\mathbf{v} = \frac{\partial n}{\partial t}$ (7.2)
- o Since v and r are independent, v is not effected by gradient operator:

$$\int \mathbf{v} \cdot \nabla f d\mathbf{v} = \nabla \cdot \int \mathbf{v} f d\mathbf{v}$$

o From before, the first order moment of distribution function is

$$\mathbf{u} = \frac{1}{n} \int \mathbf{v} f(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}$$
 therefore,
$$\int \mathbf{v} \cdot \nabla f d\mathbf{v} = \nabla \cdot (n\mathbf{u}) \tag{7.3}$$

Zeroth-order Moment: Continuity Equation

o For the third term, consider **E** and **B** separately. **E** term vanishes as

$$\int \mathbf{E} \cdot \frac{\partial f}{\partial \mathbf{v}} d\mathbf{v} = \int \frac{\partial}{\partial \mathbf{v}} \cdot (f\mathbf{E}) d\mathbf{v} = \int f\mathbf{E} \cdot d\mathbf{S} = 0$$
 (7.4a)

using Gauss' Divergence Theorem in velocity space. The surface area in velocity space goes as v^2 . As $v \to \infty$, $f \to 0$ more quickly than $\mathbf{S} \to \infty$ (e.g., f typically goes as $1/v^2$. A Maxwellian goes as e^{-v^2}). Integral to $\mathbf{v} =$ infinity therefore goes to zero.

O Using vector identity $\nabla \cdot (a\mathbf{A}) = \mathbf{A} \cdot \nabla a + a\nabla \cdot \mathbf{A}$ the $\mathbf{v} \times \mathbf{B}$ term is

$$\int (\mathbf{v} \times \mathbf{B}) \cdot \frac{\partial f}{\partial \mathbf{v}} d\mathbf{v} = \int \frac{\partial}{\partial \mathbf{v}} \cdot (f\mathbf{v} \times \mathbf{B}) d\mathbf{v} - \int f \frac{\partial}{\partial \mathbf{v}} \cdot (\mathbf{v} \times \mathbf{B}) d\mathbf{v}$$
$$= \int f(\mathbf{v} \times \mathbf{B}) \cdot d\mathbf{S} - \int f \frac{\partial}{\partial \mathbf{v}} \cdot (\mathbf{v} \times \mathbf{B}) d\mathbf{v} = 0 \tag{7.4b}$$

○ The first term on right again vanishes as f > 0 more quickly than $S > \infty$. The second vanishes as $\mathbf{v} \times \mathbf{B}$ is perpendicular to $\partial/\partial \mathbf{v}$.

Zeroth-order Moment: Continuity Equation

• Last term is on right hand side of Eqn. 7.1:

$$\int \left(\frac{\partial f}{\partial t}\right)_{coll} d\mathbf{v} = \frac{\partial}{\partial t} \left[\int f d\mathbf{v} \right] = 0$$
 (7.5)

- This is assuming that the total number of particles remains constant as collisions proceed.
- \circ Combining Eqns. 7.2 7.5 yields the equation of continuity:

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{u}) = 0 \tag{7.6}$$

- First term represents rate of change of particle concentration within a volume, while
 the second term represents the divergence of particles of the flow of particles out of
 the volume.
- Eqn. 7.6 is the *first of the equations of magnetohydrodynamics (MHD)*. Eqn. 7.6 is a continuity equation for mass or charge transport if we multiply *m* or *q*.

First-order Moment: Momentum Transport

o Re-write Eqn. 7.1:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{q}{m} [\mathbf{E} + (\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}} = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

• Next moment of the Boltzmann equation is obtained by multiplying Eqn. 7.1 by mv and integrating over dv.

$$m \int \mathbf{v} \frac{\partial f}{\partial t} d\mathbf{v} + m \int \mathbf{v} (\mathbf{v} \cdot \nabla) f d\mathbf{v} + q \int \mathbf{v} [\mathbf{E} + (\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}} d\mathbf{v} = \int m \mathbf{v} \left(\frac{\partial f}{\partial t} \right)_{coll} d\mathbf{v}$$
(7.7)

- On The right-hand side is the change of the momentum due to collisions and will be given the term P_{ij} .
- The first term gives $m \int \mathbf{v} \frac{\partial f}{\partial t} d\mathbf{v} = m \frac{\partial}{\partial t} \int \mathbf{v} f d\mathbf{v}$ $= m \frac{\partial (n\mathbf{u})}{\partial t}$ (7.8)

First-order Moment: Momentum Transport

Next consider third term:

$$\int \mathbf{v} [\mathbf{E} + (\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}} d\mathbf{v} = \int \frac{\partial}{\partial \mathbf{v}} \cdot [f \mathbf{v} (\mathbf{E} + \mathbf{v} \times \mathbf{B})] d\mathbf{v}$$
$$- \int f \mathbf{v} \frac{\partial}{\partial \mathbf{v}} \cdot (\mathbf{E} + \mathbf{v} \times \mathbf{B}) d\mathbf{v}$$
$$- \int f (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \frac{\partial}{\partial \mathbf{v}} \mathbf{v} d\mathbf{v}$$

o The first to integrals on the right vanish for same reasons as before.

Therefore have,
$$q \int \mathbf{v} [\mathbf{E} + (\mathbf{v} \times \mathbf{B})] \cdot \frac{\partial f}{\partial \mathbf{v}} d\mathbf{v} = -q \int f(\mathbf{E} + \mathbf{v} \times \mathbf{B}) d\mathbf{v}$$

= $-q n (\mathbf{E} + \mathbf{u} \times \mathbf{B})$ (7.9)

 To evaluate the second integral of Eqn. 7.7, use fact that v does not depend on gradient operator:

$$\int \mathbf{v}(\mathbf{v} \cdot \nabla) f d\mathbf{v} = \int \nabla \cdot (f \mathbf{v} \mathbf{v}) d\mathbf{v}$$
$$= \nabla \cdot \int f \mathbf{v} \mathbf{v} d\mathbf{v}$$

First-order Moment: Momentum Transport

 \circ Since the average of a quantity is 1/n times its weighted integral over v, we have

$$\nabla \cdot \int f \mathbf{v} \mathbf{v} d\mathbf{v} = \nabla \cdot (n < \mathbf{v} \mathbf{v} >)$$

o Now separate v into average fluid velocity u and a thermal velocity w:

$$\mathbf{v} = \mathbf{u} + \mathbf{w}$$

O Since **u** is already and average, we have

$$\nabla \cdot (n < \mathbf{v}\mathbf{v} >) = \nabla \cdot (n\mathbf{u}\mathbf{u}) + \nabla \cdot (n < \mathbf{w}\mathbf{w} >) + 2\nabla \cdot (n\mathbf{u} < \mathbf{w} >)$$
(7.10)

• The average thermal velocity is zero \Rightarrow < \mathbf{w} > = 0 and

$$\mathbf{P} = mn < \mathbf{w}\mathbf{w} > \tag{7.11}$$

is the *stress tensor*. Also called the *pressure tensor* or *dyad*.

 \circ **P** is a measure of the thermal motion in a fluid. If all particles moved with same steady velocity **v**, then **w** = 0 and thus **P** = 0 (i.e., a cold plasma).

First-order Moment: Momentum Transport

o Remaining term in Eqn. 7.7 can be written

$$\nabla \cdot (n\mathbf{u}\mathbf{u}) = \mathbf{u}\nabla \cdot (n\mathbf{u}) + n(\mathbf{u} \cdot \nabla)\mathbf{u}$$
 (7.12)

o Collecting Eqns. 7.8, 7.9, 7.11 and 7.12, we have

$$m\frac{\partial}{\partial t}(n\mathbf{u}) + m\mathbf{u}\nabla \cdot (n\mathbf{u}) + mn(\mathbf{u} \cdot \nabla)\mathbf{u} + \nabla \cdot \mathbf{P} - qn(\mathbf{E} + \mathbf{u} \times \mathbf{B}) = \mathbf{P}_{ij}$$

o Combining the first two terms, we obtain the *fluid equation of motion*:

$$mn\left[\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right] = qn(\mathbf{E} + \mathbf{u} \times \mathbf{B}) - \nabla \cdot \mathbf{P} + \mathbf{P}_{ij}$$
(7.13)

- o This describes flow of momentum also called *momentum transport equation*.
- Eqn. 7.13 is a statement of conservation of momentum and represents force balance on components of plasma. On right are the Lorentz force, pressure, and collisions.

Summary of Moments of Vlasov Equation

• Equations of MHD and multi-fluid theory are obtained by taking the moments of the Vlasov equation, corresponding to mass, momentum and energy.

```
\int (Vlasov equation) d\mathbf{v} => conservation of mass \int (Vlasov equation) \mathbf{v} d\mathbf{v} => conservation of momentum \int (Vlasov equation) \mathbf{v}^2/2 d\mathbf{v} => conservation of energy
```

- Zeroth moment of the Vlasov equation results in the MHD mass continuity equation (Eqn. 7.6).
- o First moment of Vlasov equation gives MHD momentum equation (Eqn. 7.13).
- o Second moment of Vlasov equation give MHD energy transport equation.

Hierarchy of plasma phenomena

