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o  Fluid approach describes bulk properties of plasma. We do not attempt to solve 
unique trajectories of all particles in a plasma. This simplification works very well 
for majority of plasmas, despite gross simplifications made. 

o  Fluid theory follows directly from moments of the Boltzmann equation (Lecture 7). 

o  Each of the moments of the Boltzmann equation is a transport equation describing 
the dynamics of a quantity associated with a given power of v. 
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o  Simplest set of macroscopic equations can be obtained by simplifying the 
momentum transfer equation and neglect thermal motions of particles. 

o  Here, set kinetic pressure tensor to zero, i.e., P = mn <ww> = 0 as w = 0. 

o  Remaining macroscopic variables are then n and u, described by 

o  Collision term Pij can be approximated by by an “effective” collision frequency. 

o  Assumed that collisions cause a rate of decrease in momentum: 

! 

"n
"t

+# $(nu) = 0

! 

mn "u
"t

+ (u #$)u% 
& ' 

( 
) * 
= qn(E+u+B)+Pij

! 

Pij = "mnveff u



C-$/A+,-./-*B%&;,*

o  Alternative set of macroscopic equation is obtained by truncating energy 
conservation equation. 

o  Consider pressure tensor: 

o  Components represent transport of momentum. Diagonal elements represent 
pressure, while off-diagonal represent shearing stresses.  

o  In warm-plasma model, only consider diagonal pressure elements, so 

o  That is, viscous forces are neglected.  We then have 
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o  The previous system of equations does not form a closed set, since scalar pressure 
is now a third variable. Usually determined by energy equation 

o  If plasma is isothermal, assume equation of state of form:     

       p = nkBT     and 

o  Holds for slow time variations, allowing temperatures to reach equilibrium. 

o  If plasma does not exchange energy with its surrounds, assume it is adiabatic: 

    p n-! = constant      and    

 where ! is the ratio of the specific heats at constant pressure.   
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o  Note, the energy equation can be written  

 where q is the heat flow vector. For electrons, commonly used approximation for q is   

 where K is the thermal Spitzer conductivity. 

o  As average energy of plasma is 1/2m <ww> = 3/2 kB T and using p = n kB T 
 => 3/2 p = 1/2nm<ww>. Energy equation can then be written 

o  The quantity 3/2pu represents the flow of energy density at the fluid velocity. 
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o  Consider plasma of two species; ions and electrons, in which fluid is fully ionised, 
isotropic and collisionless. The charge and current densities are 

o  Using v = u, complete set of electrodynamics equations are then (j = i or e) 
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o  Since a fluid element is composed of mane individual particles, expect drifts 
perpendicular to B. But, the grad (p) term results in a fluid drift called diamagnetic 
drift.  

o  Consider momentum equation for each species: 

                   (1)       (2)                         (3) 
o  Consider ratio of terms (1) to (3): 

o  Here we have used        . If only consider slow drifts compared to time-scale 
of the gyrofrequency, can set (1) to zero. 
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o  Therefore can write 

 where 

o  Taking the cross-product 

o  Using the identity           we can write 

o  As v⊥ is perpendicular to B, v⊥. B = 0. Therefore   
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o  In previous equation is                             E ! B drift  

 and          is diamagnetic drift. 

o  The vE drift is same as for guiding centres, but there is now a new drift, called the  
 diamagnetic drift.  Is in opposite directions for ions and electrons. 

o  Gives currents in plasma that reduce magnetic field in plasma. More ions moving to 
left in shaded area that to the right (Inan & Golkowski, Page 111).  
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o  Diamagnetic drift first measured in Q-machines 

o  See http://www.physics.uiowa.edu/xplasma/Qmachine.html 
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o  Consider z component of fluid equation of motion: 

o  The convective term can be neglected as is is much smaller than 

o  Using p = n kB T or          we can write 

o  This shows that the fluid is accelerated along B under the combined electrostatic 
and pressure gradient forces. 
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o  Taking the limit as m -> 0 and q = -e and                        we have 

o  Electrons are so mobile that their heat conductivity is almost infinite.  

o  Assuming isothermal electrons and taking ! = 1, we can integrate to get 

o  We can therefore write 

o  This is called the Boltzmann relation or Boltzmann factor for electrons.  

o  Implies that electrons have a tendency to move rapidly in response to and external 
force (i.e., electrostatic potential gradient).  
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