Introduction to Plasma Physics (PY5012) Homework 1

Submit solutions at lecture on Monday, October 10, 2011 Note: This homework is worth 10% of total module mark

- **1.** State and describe the three criteria required for an ionised gas to be considered a plasma (<1 page).
- **2.** Compute the Larmor radius for the following cases, assuming v_{ll} is negligible.
 - a) A 10 keV electron in the Earth magnetic field of 5 x 10^{-5} T.
 - **b)** A solar wind proton with streaming velocity of 300 km s⁻¹ along a magnetic field of 5×10^{-9} T.
 - c) A 1 keV He $^+$ ion in the solar atmosphere near a sunspot, where the magnetic field is 5 x 10^{-2} T.
- **3. a)** Assuming a slap of plasma of cross-section A and thickness dx, containing n_n neutral particles per unit volume with cross-sections σ , show that the flux of an incident beam of electrons varies as

$$\Phi = \Phi_0 e^{-x/\lambda_{mfp}}$$

where $\lambda_{mfp} = 1/(n_n \sigma)$ is the mean free path.

b) The Coulomb cross-section of a charged particle can be written $\sigma = \pi r_c^2$, where r_c is a measure of the Coulomb radius. Taking into account that the Coulomb potential is approximately equal to the electron thermal energy at r_c , show that

$$\sigma = \pi \left(\frac{e^2}{6\pi k_B \varepsilon_0} \right)^2 \frac{1}{T^2}$$

c) Discuss the terms *collisional* and *collisionless* plasmas, making particular reference to the mean free path and Coulomb cross-section.