Introduction to Plasma Physics (PY5012) Homework 3

Submit solutions by email on Wednesday, December 21, 2011 Note: This homework is worth 10% of total module mark

1. Starting from the linearized solenoidal constraint ($\nabla \cdot \mathbf{B}_1 = 0$), show that if this is true at one time then it is also true at any subsequent time.

[Hint: consider the linearized induction equation]

2. Calculate the Alfvén wave fundamental oscillation period in a coronal loop of length 50 Mm with background magnetic field of 10^{-3} T and particle density of 10^{15} m⁻³.

[Hint: fundamental oscillation modes have $\lambda = L/2$]

3. Starting from the generalized wave equation,

$$\frac{\boldsymbol{\omega}^2 \mathbf{v}_1}{\boldsymbol{v}_A^2} = k^2 \cos^2(\boldsymbol{\theta}_{\mathbf{k}\mathbf{B}_0}) \mathbf{v}_1 - (\mathbf{k} \cdot \mathbf{v}_1) k \cos(\boldsymbol{\theta}_{\mathbf{k}\mathbf{B}_0}) \hat{\mathbf{B}}_0 + \left[\left(1 + \frac{c_s^2}{\boldsymbol{v}_A^2} \right) (\mathbf{k} \cdot \mathbf{v}_1) - k \cos(\boldsymbol{\theta}_{\mathbf{k}\mathbf{B}_0}) (\hat{\mathbf{B}}_0 \cdot \mathbf{v}_1) \right] \mathbf{k}$$

derive the magnetoacoustic dispersion relation using two instances of scalar multiplication,

$$\omega^{4} - \omega^{2} k^{2} (c_{s}^{2} + v_{A}^{2}) + c_{s}^{2} v_{A}^{2} k^{4} \cos^{2} \theta_{kB_{0}} = 0$$

[Hint: consider which two vectors have the simplest self dot-product]

4. Calculate the magnetoacoustic fast-mode wave phase speed in a 4 MK stellar corona with a background particle density of 10^{14} m⁻³, Consider a horizontal wave propagating at right angles to a background magnetic field of 10^{-3} T.

[Hint: use a mean molecular weight, μ , of 0.59]

5. Discuss how the solution to Q4 and the wave propagation scenario would change when considering that magnetic field lines are not purely vertical in coronae.