Order antimorphisms of finite-dimensional cones.
*
Cormac Walsh
*

Preprint, 2017.
HAL

Flag-Approximability of convex bodies and Volume growth of Hilbert geometries.
*
Constantin Vernicos and Cormac Walsh
*

Preprint, 2016.
HAL

Hilbert and Thompson geometries isometric to infinite-dimensional Banach spaces.
*
Cormac Walsh
*

To appear in *Annals Instit. Fourier*.
arXiv

Gauge-reversing maps on cones, and Hilbert and Thompson isometries.
*
Cormac Walsh
*

*Geometry and Topology. 22 (1) 55-104, 2018.*
arXiv

The asymptotic geometry of the Teichmuller metric.
*
Cormac Walsh
*

To appear in *Geometriae Dedicata*
arXiv

The horofunction boundary and isometry group of the Hilbert geometry
*
In Handbook of Hilbert Geometry
(A. Papadopoulos, M. Troyanov, eds.)
European Mathematical Society, Zurich, 2014, 127-146.
*
arXiv

The horoboundary and isometry group of Thurston's Lipschitz metric.
*
Cormac Walsh
*

*
In Handbook of Teichmuller theory
(A. Papadopoulos, ed.), Volume IV,
European Mathematical Society, Zurich, 2014, 327-353.
*
arXiv

Isometries of polyhedral Hilbert geometries.
*
Bas Lemmens, Cormac Walsh
*

*Journal of Topology and Analysis. 3 (2) 213-241, 2011. *
arXiv

The action of a nilpotent group on its horofunction boundary has finite orbits.
*
Cormac Walsh
*

*Groups, Geometry, and Dynamics. 5 (1) 189-206, 2011. *
arXiv

Busemann points of Artin groups of dihedral type.
*
Cormac Walsh
*

*Internat. J. Algebra Comput. 19 (7) 891-910, 2009.*
arXiv

The horofunction boundary of the Hilbert geometry.
*
Cormac Walsh
*

*
Advances in Geometry 8 (4) 503-529, 2008.
*
arXiv

The horofunction boundary of finite-dimensional normed spaces.
*
Cormac Walsh
*

*
Mathematical Proceedings of the Cambridge Philosophical Society, Volume
142, Issue 03, May 2007, pp 497-507
*
arXiv

Minimum representing measures in Idempotent Analysis.
*
Cormac Walsh
*

*
Appears in "Idempotent Mathematics and Mathematical Physics",
G. L. Litvinov and S. N. Sergeev, Eds, vol. 495 of Contemporary Mathematics,
pp. 367-382, AMS, 2009.
*
arXiv

A Metric Inequality for the Thompson and Hilbert Geometries.
R. D. Nussbaum and Cormac Walsh

*
J. Inequalities Pure Appl. Math. 5 (3) Article 54, 2004.
*

Iterates of Maps which are Non-expansive in Hilbert's Projective Metric.
J. Gunawardena and Cormac Walsh

*
Kybernetika 39 (2) 193-204, 2003.
*