Metric geometry

Gauge-reversing maps on cones, and Hilbert and Thompson isometries. Cormac Walsh
Preprint. arXiv

The asymptotic geometry of the Teichmuller metric. Cormac Walsh
Preprint. arXiv

The horofunction boundary and isometry group of the Hilbert geometry In Handbook of Hilbert Geometry (A. Papadopoulos, M. Troyanov, eds.) European Mathematical Society, Zurich, 2014, 127-146. arXiv

The horoboundary and isometry group of Thurston's Lipschitz metric. Cormac Walsh
In Handbook of Teichmuller theory (A. Papadopoulos, ed.), Volume IV, European Mathematical Society, Zurich, 2014, 327-353. arXiv

Isometries of polyhedral Hilbert geometries. Bas Lemmens, Cormac Walsh
Journal of Topology and Analysis. 3 (2) 213-241, 2011. arXiv

The action of a nilpotent group on its horofunction boundary has finite orbits. Cormac Walsh
Groups, Geometry, and Dynamics. 5 (1) 189-206, 2011. arXiv

Busemann points of Artin groups of dihedral type. Cormac Walsh
Internat. J. Algebra Comput. 19 (7) 891-910, 2009. arXiv

The horofunction boundary of the Hilbert geometry. Cormac Walsh
Advances in Geometry 8 (4) 503-529, 2008. arXiv

The horofunction boundary of finite-dimensional normed spaces. Cormac Walsh
Mathematical Proceedings of the Cambridge Philosophical Society, Volume 142, Issue 03, May 2007, pp 497-507 arXiv

Minimum representing measures in Idempotent Analysis. Cormac Walsh
Appears in "Idempotent Mathematics and Mathematical Physics", G. L. Litvinov and S. N. Sergeev, Eds, vol. 495 of Contemporary Mathematics, pp. 367-382, AMS, 2009. arXiv

A Metric Inequality for the Thompson and Hilbert Geometries. R. D. Nussbaum and Cormac Walsh
J. Inequalities Pure Appl. Math. 5 (3) Article 54, 2004.

Iterates of Maps which are Non-expansive in Hilbert's Projective Metric. J. Gunawardena and Cormac Walsh
Kybernetika 39 (2) 193-204, 2003.