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PREFACE TO THE THIRD ENGLISH EDITION

THis book continues the series of English translations of the revised and
augmented volumes in the Course of Theoretical Physics, which have been
appearing in Russian since 1973. The English translations of volumes 2
(Classical Theory of Fields) and 3 (Quantum MMechanics) will shortly both
have been published. Unlike those two, the present volume 1 has not
required any considerable revision, as is to be expected in such a well-
established branch of theoretical physics as mechanics is. Only the final
sections, on adiabatic invariants, have been revised by L. P. Pitaevskii
and myself.

The Course of Theoretical Physics was initiated by I.andau, my teacher
and friend. Our work together on these books began in the late 1930s and
continued until the tragic accident that befell him in 1962, Landau’s work
In science was always such as to display his striving for clarity, his effort to
make simple what was complex and so to reveal the laws of nature in their
true simplicity and beauty. It was this aim which he sought to instil into his
pupils, and which has determined the character of the Course. I have tried
to maintain this spirit, so far as I was able, in the revisions that have had
to be made without Landau’s participation. Tt has been my good fortune to
find a colleague for this work in L. P. Pitaevskii, a younger pupil of Landau’s.

The present edition contains the biography of Landau which I wrote in
1969 for the posthumous Russian edition of his Collected Works. 1 should
like to hope that it will give the reader some slight idea of the personality of
that remarkable man.

The English translations of the Course were begun by Professor
M. Hamermesh in 1951 and continued by Dr. J. B. Sykes and his colleagues.
No praise can be too great for their attentive and careful work, which has
contributed so much to the success of our books in the English-speaking
world.

Institute of Physical Problems E. M. Lirsuitz
U.S.S.R. Academy of Sciences
Moscow 1976






LEV DAVIDOVICH LANDAU (1908-1968)t

VEry little time has passed since the death of Lev Davidovich Landau on
1 April 1968, but fate wills that even now we view him at a distance, as it
were. From that distance we perceive more clearly not only his greatness as
a scientist, the significance of whose work becomes increasingly obvious
with time, but also that he was a great-hearted human being. He was
uncommonly just and benevolent. There is no doubt that therein lie the
roots of his popularity as a scientist and teacher, the roots of that genuine
love and esteem which his direct and indirect pupils felt for him and which
were manifested with such exceptional strength during the days of the
struggle to save his life following the terrible accident.

T'o him fell the tragic fate of dying twice. The first time it happened was
six years earlier on 7 January 1962 when on the icy road, en route from
Moscow to Dubna, his car skidded and collided with a lorry coming from
the opposite direction. The epic story of the subsequent struggle to save
his life is primarily a story of the selfless labour and skill of numerous
physicians and nurses. But it is also a story of a remarkable feat of solidarity.
The calamitous accident agitated the entire community of physicists,
arousing a spontaneous and instant response. The hospital in which Landau
lay unconscious became a centre to all those - his students and colleagues —
who strove to make whatever contributions they could to help the physicians
in their desperate struggle to save Landau’s life.

“Their feat of comradeship commenced on the very first day. lllustrious
scientists who, however, had no idea of medicine, academicians, correspond-
ing members of the scientific academies, doctors, candidates, men of the
same generation as the 54-year-old Landau as well as his pupils and their
still more youthful pupils — all volunteered to act as messengers, chauffeurs,
intermediaries, suppliers, secretaries, members of the watch and, lastly,
porters and labourers. Their spontaneously established headquarters was
located in the office of the Physician-in-Chief of Hospital No. 50 and it
became a round-the-clock organizational centre for an unconditional and
immediate implementation of any instruction of the attending physicians.

1 By E. M. Lifshitz; written for the Russian edition of Landau’s Collected Papers, and
first published in Russian in Uspekhi fizicheskikh nauk 97, 169-183, 1969. This translation
is by E. Bergman (first published in Soviet Physics Uspekhi 12, 135-143, 1969), with minor
modifications, and is reprinted by kind permission of the American Institute of Physics.
The reference numbers correspond to the numbering in the Collected Papers of L. D. Landau
(Pergamon Press, Oxford 1965).
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X Lev Davidovich Landau

“Eighty-seven theoreticians and experimenters took part in this voluntary
rescue team. An alphabetical list of the telephone numbers and addresses of
any one and any institution with which contact might be needed at any
instant was compiled, and it contained 223 telephone numbers! It included
other hospitals, motor transport bases, airports, customs offices, pharmacies,
ministries, and the places at which consulting physicians could most likely
be reached.

“During the most tragic days when it seemed that ‘Dau is dying’ — and
there were at least four such days — 8-10 cars could be found waiting at
any time in front of the seven-storey hospital building. . . .

“When everything depended on the artificial respiration machine, on
12 January, a theoretician suggested that it should be immediately con-
structed in the workshops of the Institute of Physical Problems. This was
unnecessary and naive, but how amazingly spontaneous! The physicists
obtained the machine from the Institute for the Study of Poliomyelitis
and carried it in their own hands to the ward where Landau was gasping
for breath. They saved their colleague, teacher, and friend.

“The story could be continued without limit. This was a real fraternity
of physicists. . . .”’

And so, Landau’s life was saved. But when after three months he re-
gained consciousness, it was no longer the same man whom we had known.
He was not able to recover from all the consequences of his accident and
never again completely regained his abilities. The story of the six years
that followed is only a story of prolonged suffering and pain.

* * *

Lev Davidovich Landau was born on 22 January 1908 in Baku, in the
family of a petroleum engineer who worked on the Baku oil-fields. His
mother was a physician and at one time had engaged in scientific work on
physiology.

He completed his school course at the age of 13. Even then he already
was attracted by the exact sciences, and his mathematical ability manifested
itself very early. He studied mathematical analysis on his own and later he
used to say that he hardly remembereéd a time when he did not know
differentiation and integration.

His parents considered him too young to enter a university and for a
year he attended the Baku Economic Technicum. In 1922 he enrolled at
Baku University where he studied simultaneously in two departments:
Physico-mathematical and Chemical. Subsequently he did not continue
his chemical education but he remained interested in chemistry throughout
his life.

In 1924 Landau transferred to the Physics Department of Leningrad

1t From D. Danin, “Comradeship”’, Literaturnaya Gazeta (Literary Gazette), 21 July 1962.
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University. In Leningrad, the main centre of Soviet physics at that time,
he first made the acquaintance of genuine theoretical physics, which was
then going through a turbulent period. He devoted himself to its study with
all his youthful zeal and enthusiasm and worked so strenuously that often
he became so exhausted that at night he could not sleep, still turning over
formulae in his mind.

Later he used to describe how at that time he was amazed by the in-
credible beauty of the general theory of relativity (sometimes he even
would declare that such a rapture on first making one’s acquaintance with
this theory should be a characteristic of any born theoretical physicist).
He also described the state of ecstasy to which he was brought on reading
the articles by Heisenberg and Schridinger signalling the birth of the new
quantum mechanics. He said that he derived from them not only delight in
the true glamour of science but also an acute realization of the power of
the human genius, whose greatest triumph is that man is capable of appre-
hending things beyond the pale of his imagination. And of course, the
curvature of space-time and the uncertainty principle are precisely of this
kind.

In 1927 Landau graduated from the university and enrolled for post-
graduate study at the Leningrad Physicotechnical Institute where even
earlier, in 1926, he had been a part-time research student. These years
brought his first scientific publications. In 1926 he published a theory of
intensities in the spectra of diatomic molecules [1],} and as early as 1927,
a study of the problem of damping in quantum mechanics, which first
introduced a description of the state of a system with the aid of the density
matrix.

His fascination with physics and his first achievements as a scientist were,
however, at the time beclouded by a painful diffidence in his relations with
others. This trait caused him a great deal of suffering and at times — as he
himself confessed in later years — led him to despair. The changes which
occurred in him with the years and transformed him into a buoyant and
gregarious individual were largely a result of his characteristic self-discipline
and feeling of duty toward himself. These qualities, together with his sober
and self-critical mind, enabled him to train himself and to evolve into a
person with a rare ability — the ability to be happy. The same sobriety of
mind enabled him always to distinguish between what is of real value in
life and what is unimportant triviality, and thus also to retain his mental
equilibrium during the difficult moments which occurred in his life too.

In 1929, on an assignment from the People’s Commissariat of Education,
Landau travelled abroad and for one and a half years worked in Denmark,
Great Britain and Switzerland. To him the most important part of his trip
was his stay in Copenhagen where, at the Institute of Theoretical Physics,

+ He did not know, however, at the ti

me t & > v 1 s
year earlier by Hénl and London. e that these results had been already published a
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theoretical physicists from all Europe gathered round the great Niels Bohr
and, during the famous seminars headed by Bohr, discussed all the basic
problems of the theoretical physics of the time. This scientific atmosphere,
enhanced by the charm of the personality of Bohr himself, decisively
influenced Landau in forming his own outlook on physics and subsequently
he always considered himself a disciple of Niels Bohr. He visited Copen-
hagen two more times, in 1933 and 1934. Landau’s sojourn abroad was
the occasion, in particular, of his work on the theory of the diamagnetism
of an electron gas [4] and the study of the limitations imposed on the
measurability of physical quantities in the relativistic quantum region (in
collaboration with Peierls) [6].

On his return to Leningrad in 1931 Landau worked in the Leningrad
Physicotechnical Institute and in 1932 he moved to Khar’kov, where he
became head of the Theoretical Division of the newly organized Ukrainian
Physicotechnical Institute, an offshoot of the Leningrad Institute. At the
same time he headed the Department of Theoretical Physics at the Physics
and Mechanics Faculty of the Khar’kov Mechanics and Machine Building
Institute and in 1935 he became Professor of General Physics at /Khar’kov
University. .

The Khar’kov period was for Landau a time of intense and varied
research activity.} It was there that he began his teaching career and estab-
lished his own school of theoretical physics.

‘Twentieth-century theoretical physics is rich in illustrious names of
trail-blazing creators, and Landau was one of these creators. But his
influence on scientific progress was far from exhausted by his personal
contribution to it. He was not only an outstanding physicist but also a
genuinely outstanding educator, a born educator. In this respect one may
take the liberty of comparing Landau only to his own teacher — Niels Bohr.

The problems of the teaching of theoretical physics as well as of physics
as a whole had first attracted his interest while still quite a young man. It
was there, in Khar’kov, that he first began to work out programmes for the
“theoretical minimum” — programmes of the basic knowledge in theoretical
physics needed by experimental physicists and by those who wish to devote
themselves to professional research work in theoretical physics. In addition
to drafting these programmes, he gave lectures on theoretical physics to
the scientific staff at the Ukrainian Physicotechnical Institute as well as to
students of the Physics and Mechanics F aculty. Attracted by the ideas of
reorganizing instruction in physics:as a whole, \he accepted the Chair of
General Physics at Khar’kov State \ University \(and subsequently, after

T The extent of Landau’s scientific activities at the time can be graspgd from the l.iSt of
studies he completed during the year 1936 alone: theory of second-order phase t_ran§ltions
[29], theory of the intermediate state of superconductors [30], the transport equation in the
case of Coulomb interaction [24], the theory of unimolecular reactions [23], properties of
metals at very low temperatures [25], theory of the dispersion and absorption of soung
[22, 28], theory of photoelectric effects in semiconductors [21]-
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the war, he continued to give lectures on general physics at the Physico-
technical Faculty of Moscow State University).

It was there also, in Khar’kov, that Landau had conceived the idea and
began to implement the programme for compiling a complete Course of
Theoretical Physics and Course of General Physics. All his life long, L.andau
dreamed of writing books on physics at every level — from school textbooks
to a course of theoretical physics for specialists. In fact, by the time of his
fateful accident, nearly all the volumes of the Course of Theoretical Physics
and the first volumes of the Course of General Physics and Physics for
Everyone had been completed. He also had drafted plans for the compllatlon
of textbooks on mathematics for physicists, which should be “a guide to
action”, should instruct in the practical applications of mathematics to
physics, and should be free of the rigours and complexities unnecessary to
this course. He did not have time to begin to translate this programme into
reality.

Landau always attached great importance to the mastering of mathemati-
cal techniques by the theoretical physicist. The degree of this mastery
should be such that, insofar as possible, mathematical complications would
not distract attention from the physical difficulties of the problem — at least
whenever standard mathematical techniques are concerned. This can be
achieved only by sufficient training. Yet experience shows that the current
style and programmes for university instruction in mathematics for physi-
cists often do not ensure such training. Experience also shows that after a
physicist commences his independent research activity he finds the study
of mathematics too “boring”.

Therefore, the first test which Landau gave to anyone who desired to
become one of his students was a quiz in mathematics in its “practical”
calculational aspects.t The successful applicant could then pass on to the
study of the seven successive sections of the programme for the “theoretical
minimum’’, which includes basic knowledge of all the domains of theoretical
physics, and subsequently take an appropriate examination. In Landau’s
opinion, this basic knowledge should be mastered by any theoretician
regardless of his future specialization. Of course, he did not expect anyone
to be as universally well-versed in science as he himself. But he thus
manifested his belief in the integrity of theoretical physics as a single
science with unified methods.

At first Landau himself gave the examination for the “theoretical
minimum”’. Subsequently, after the number of applicants became too large,
this duty was shared with his closest associates. But Landau always re-

) t The requirements were: ability to evaluate any indefinite integral that can be expressed
in terms of elementary functions and to solve any ordinary differential equation of the standard
type, knowledge of vector analysis and tensor algebra as well as of the principles of the theory
of functions of a complex variable (theory of residues, Laplace method). It was assumed that
such fields as tensor analysis and group theory would be studied together with the fields of
theoretical physics to which they apply.
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served for himself the first test, the first meeting with cach new young
applicant. Anyone could meet him — it was sufficient to ring him up and
ask him for an interview.

Of course, not every one who began to study the “theoretical minimum”’
had sufficient ability and persistence to complete it. Altogether, between
1934 and 1961, 43 persons passed this test. The effectiveness of this selec-
tion can be perceived from the following indicative facts alone: of these
persons 7 already have become members of the Academy of Sciences and
an additional 16, doctors of sciences. b

In the spring of 1937 L.andau moved to Moscow where he became head
of the Theoretical Division of the Institute of Physical Problems which had
not long before been established under the direction of P. .. Kapitza.
There he remained to the end of his life; in this Institute, which became a
home to him, his varied activity reached its full flowering. It was there, in a
remarkable interaction with experimental research, that Landau created
what may be the outstanding accomplishment of his scientific life — the
theory of quantum fluids.

It was there also that he received the numerous outward manifestations
of the recognition of his contributions. In 1946 he was elected a full Member
of the USSR Academy of Sciences. He was awarded a number of orders
(including two Orders of Lenin) and the honorific title of Hero of Socialist
Labour — a reward for both his scientific accomplishments and his contribu-
tion to the implementation of important practical State tasks. He was
awarded the State Prize three times and in 1962, the l.enin Prize. There
also was no lack of honorific awards from other countries. As far back as
1951 he was elected member of the Danish Royal Academy of Sciences
and in 1956, member of the Netherlands Royal Academy of Sciences. In
1959 he became honorary fellow of the British Institute of Physics and
Physical Society and in 1960, Foreign Member of the Royal Society of
Great Britain. In the same year he was elected to membership in the National
Academy of Sciences of the United States and the American Academy of
Arts and Sciences. In 1960 he became reciptent of the F. London Prize
(United States) and of the Max Planck Medal (West Germany). Lastly, in
1962 he was awarded the Nobel Prize in Physics ““for his pioneering theories
for condensed matter, especially liquid helium”.

Landau’s scientific influence was, of course, far from confined to his own
disciples. He was deeply democratic in his life as a scientist (and in his life
as a human being, for that matter; pomposity and deference to titles always
remained foreign to him). Anyone, regardless of his scientific merits and
title, could ask Landau for counsel and criticism (which were in_variably
precise and clear), on one condition only: the question must be businesslike
instead of pertaining to what he detested most in science: empty philoso-
phizing or vapidity and futility cloaked in pseudO-SCi‘“_mﬁc sophistries,
He had an acutely critical mind; this quality, along with his approach from

mm———— e
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the standpoint of profound physics, made discussion with him extremely
attractive and useful.

In discussion he used to be ardent and incisive but not rude; witty and
ironic but not caustic. The nameplate which he hung on the door of his
office at the Ukrainian Physicotechnical Institute bore the inscription:

L. LANDAU
BEWARE, HE BITES!

With years his character and manner mellowed somewhat, but his
enthusiasm for science and his uncompromising attitude toward science
remained unchanged. And certainly his sharp exterior concealed a scientifi-
cally impartial attitude, a great heart and great kindness. However harsh
and unsparing he may have been in his critical comments, he was just as
intense in his desire to contribute with his advice to another man’s success,
and his approval, when he gave it, was just as ardent.

These traits of Landau’s personality as a scientist and of his talent
actually elevated him to the position of a supreme scientific judge, as it
were, over his students and colleagues.t There is no doubt that this side of
Landau’s activities, his scientific and moral authority which exerted a
restraining influence on frivolity in research, has also markedly contributed
to the lofty level of our theoretical physics.

His constant scientific contact with a large number of students and
colleagues also represented to Landau a source of knowledge. A unique
aspect of his style of work was that, ever since long ago, since the Khar’kov
years, he himself almost never read any scientific article or book but never-
theless he was always completely au courant with the latest news in physics.

t This position is symbolized in A A_ Yuzefovich’s well-known friendly cartoon, “Dau
said”, reproduced here.
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He derived this knowledge from numerous discussions and from the papers
presented at the seminar held under his direction.

T'his seminar was held regularly once a week for nearly 30 years, and in
the last years its sessions became gatherings of theoretical physicists from
all Moscow. 'The presentation of papers at this seminar became a sacred
duty for all students and co-workers, and Landau himself was extremely
serious and thorough in selecting the material to be presented. He was
interested and equally competent in every aspect of physics and the partici-
pants in the seminar did not find it easy to follow his train of thought in
instantaneously switching from the discussion of, say, the properties of
“‘strange” particles to the discussion of the encrgy spectrum of electrons in
silicon. To Landau himself listening to the papers was never an empty
formality: he did not rest until the essence of a study was completely
clucidated and all traces of “philology” — unproved statements or proposi-
tions made on the principle of “‘why might it not” — therein were eliminated.
As a result of such discussion and criticism many studies were condemned
as “pathology” and Landau completely lost interest in them. On the other
hand, articles that really contained new ideas or findings were included in
the so-called “‘gold fund” and remained in Landau’s memory for ever.

In fact, usually it was sufficient for him to know just the guiding idea of
a study in order to reproduce all of its findings. As a rule, he found it easier
to obtain them on his own than to follow in detail the author’s reasoning.
In this way he reproduced for himself and profoundly thought out most of
the basic results obtained in all the domains of theoretical physics.t This
probably also was the reason for his phenomenal ability to answer practically
any question concerning physics that might be asked of him.

Landau’s scientific style was free of the — unfortunately fairly wide-
spread — tendency to complicate simple things (often on the grounds of
generality and rigour which, however, usually turn out to be illusory). He
himself always strove towards the opposite — to simplify complex things, to
uncover in the most lucid manner the genuine simplicity of the laws under-
lying the natural phenomena. This ability of his, this skill at “trivializing”
things as he himself used to say, was to him a matter of special pride.

The striving for simplicity and order was an inherent part of the structure
of Landau’s mind. It manifested itself not only in serious matters but also
in semi-serious things as well as in his characteristic personal sense of
humour.] Thus, he liked to classify everyone, from women according to
the degree of their beauty, to theoretical physicists according to the signifi-

+ Incidentally, this explains the absence of certain needed references in Landau’s papers,
which usually was not intentional. However, in some cases he could leave out a refe_rence on
purpose, if he considered the question too trivial; and he did have his own rather high stan-
dards on that matter. i1 h

1 It is characteristic, however, that this trait was not a habit of Land";lu b2 rlls’ S;-)dt.o Spealf,
everyday outside life, in which he was not at all pedantically accurate anc a ~zone of disorder*>
would quite rapidly arise around him.



Lev Davidovich Landau Xvii

cance of their contribution to science. This last classification was based on a
logarithmic scale of five: thus, a second-class physicist supposedly accom-
plished 10 times as much as a third-class physicist (‘‘pathological types”
were ranked in the fifth class). On this scale Einstein occupied the position },
while Bohr, Heisenberg, Schrédinger, Dirac and certain others were
ranked in the first class. Landau modestly ranked himself for a long time
in class 21 and it was only comparatively late in his life that he promoted
himself to the second class.

He always worked hard (never at a desk, usually reclining on a divan at
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home). The recognition of the results of one’s work is to a greater or lesser
extent important to any scientist; it was, of course, also essential to Landau.
But it can still be said that he attached much less importance to questions of
priority than is ordinarily the case. And at any rate there js no doubt that
his drive for work was inherently motivated not by desire for fame but by
an inexhaustible curiosity and passion for exploring the laws of nature in
their large and small manifestations. He never omitted a chance to repeat
the elementary truth that one should never work for extraneous purposes,
work merely for the sake of making a great discovery, for then nothing
would be accomplished anyway.

The range of Landau’s interests outside physics also was extremely wide.
In addition to the exact sciences he loved history and was well-versed in it.
He was also passionately interested in and deeply impressed by every genre
of fine arts, though with the exception of music (and ballet).

Those who had the good fortune to be his students and friends for many
years knew that our Dau, as his friends and comrades nicknamed himt, did
not grow old. In his company boredom vanished. The brightness of his
personality never grew dull and his scientific power remained strong. All
the more senseless and frightful was the accident which put an end to his
brilliant activity at its zenith.

* * *

Landau’s articles, as a rule, display all the features of his characteristic
scientific style: clarity and lucidity of physical statement of problems, the
shortest and most elegant path towards their solution, no superfluities.
Even now, after many years, the greater part of his articles does not require
any revisions.

The brief review below is intended to provide only a tentative idea of the
abundance and diversity of Landau’s work and to clarify to some extent
the place occupied by it in the history of physics, a place which may not
always be obvious to the contemporary reader.

A characteristic feature of Landau’s scientific creativity is its almost
unprecedented breadth, which encompasses the whole of theoretical
physics, from hydrodynamics to the quantum field theory. In our century,
which is a century of increasingly narrow specialization, the scientific paths
of his students also have been gradually diverging, but Landau himself
unified them all, always retaining a truly astounding interest in everything.
It may be that in him physics has lost one of the last great universalists.

Even a cursory examination of the bibliography of Landau’s works shows
that his life cannot be divided into any lengthy periods during which he
worked only in some one domain of physics. Hence also the survey of his
works is given not in chronological order but, insofar as possible, in thematic

t Landau himself liked to say that this name originated from the French spelling of his
name: Landau = L’ane Dau (the ass Dau).
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order. We shall begin with the works devoted to the general problems of
quantum mechanics.

These include, in the first place, several of his early works. In the course
of his studies of the radiation-damping problem he was the first to introduce
the concept of incomplete quantum-mechanical description accomplished
with the aid of quantities which were subsequently termed the density
matrix [2]. In this article the density matrix was introduced in its energy
representation.

Two articles [7, 9] are devoted to the calculation of the probabilities of
quasiclassical processes. The difficulty of this problem stems from the fact
that, by virtue of the exponential nature (with a large imaginary exponent)
of the quasiclassical wave functions, the integrand in the matrix elements
is a rapidly fluctuating quantity; this greatly complicates even an estimate
of the integral; in fact, until Landau’s work all studies of problems of this
kind were erroneous. Landau was the first to provide a general method for
the calculation of quasiclassical matrix elements and he also applied it to
a number of specific processes.

In 1930 Landau (in collaboration with R. Peierls) published a detailed
study of the limitations imposed by relativistic requirements on the quantum-
mechanical description [6]; this article caused lively discussions at the time.
Its basic result lies in determining the limits of the possibility of measuring
the particle momentum within a finite time. This implied that in the rela-
tivistic quantum region it is not feasible to measure any dynamical variables
characterizing the particles in their interaction, and that the only measurable
quantities are’ the momenta (and polarizations) of free particles. Therein
also lies the physical root of the difficulties that arise when methods of
conventional quantum mechanics, employing concepts which become
meaningless in the relativistic domain, are applied there. Landau returned
to this problem in his last published article [100], in which he expressed his
conviction that the w-operators, as carriers of unobservable information,
and along with them the entire Hamiltonian method, should disappear
from a future theory.

One of the reasons for this conviction was the results of the research into
the foundations of quantum electrodynamics which Landau carried out
during 1954-1955 (in collaboration with A. A. Abrikosov, I. M. Khalatnikov
and I. Ya. Pomeranchuk) [78-81, 86]. These studies were based on the
concept of the point interaction as the limit of “smeared” interaction when
the smearing radius tends to zero. This made it possible to deal directly with
finite expressions. Further, it proved possible to carry out the summation
of the principal terms of the entire series of perturbation theory and this
led to the derivation of asymptotic expressions (for the case of large momen-
ta) for the fundamental quantities of quantum electrodynamics — the Green
functions and the vertex part. These relations, in their own turn, were used
to derive the relationship between the true charge and mass of the electron,
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on the one hand, and their “bare” values, on the other. Although these
calculations proceeded on the premise of smallness of the “bare” charge, it
was argued that the formula for the relation between true and bare charges
retains its validity regardless of the magnitude of the bage charge. Then
analysis of this formula shows that at the limit of point interaction the
true charge becomes zero — the theory is “nullified”.t (A review of the
pertinent questions is provided in the articles [84, 89]).

Only the future will show the extent of the validity of the programme
planned by Landau [100} for constructing a relativistic quantum field
theory. He himself was energetically working in this direction during the
last few years prior to his accident. As part of this programme, in particular,
he Rad worked out a general method for determining the singularities of
the quantities that occur in the diagram technique of quantum field
theory [98].

In response to the discovery in 1956 of parity nonconservation in weak
interactions, Landau immediately proposed the theory of a neutrino with
fixed helicity (“two-component neutrino’) [92]1, and also suggested the
principle of the conservation of ‘“‘combined parity”, as he termed the
combined application of spatial inversion and charge conjugation. Accord-
ing to Landau, the symmetry of space would in this way be ‘“‘saved” —
the asymmetry is transferred to the particles themselves. This principle
indeed proved to be more widely applicable than the law of parity conserva-
tion. As is known, however, in recent years processes not conserving
combined parity have also been discovered; the meaning of this violation
is at present still unclear.

A 1937 study [31] by Landau pertains to nuclear physics. This study
represents a quantitative embodiment of the ideas proposed not long
before by Bohr: the nucleus is examined by methods of statistical physics
as a drop of “quantum fluid”. It is noteworthy that this study did not make
use of any far-reaching model conceptions, contrary to the previous practice
of other investigators. In particular, the relationship between the mean
distance between the levels of the compound nucleus and the width of the
levels was established for the first time.

The absence of model conceptions is characteristic also of the theory of
proton—proton scattering developed by Landau (in collaboration with
Ya. A. Smorodinskii) [55]. The scattering cross-section in their study was
expressed in terms of parameters whose meaning is not restricted by any
specific assumptions concerning the particle interaction potential.

The study (in collaboration with Yu. B. Rumer) [36] of the cascade

+ In connection with the search for a more rigorous proot of this state_:ment,-the article
[100] contains the assertion, characteristic of Landau, that “‘the brevity of life d'(’)es not allow
us the luxury of spending time on problems which will lead to no new rgsrlts .

1 Simultaneously and independently, this theory was proposed by Salam and by [ ee
and Yang.
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theory of electron showers in cosmic rays is an example of technical
virtuosity; the physical foundations of this theory had been earlier formula-
ted by a number of investigators, but a quantitative theory was essentially
lacking. That study provided the mathematical apparatus which became the
basis for all subsequent work in this domain. Landau himself took part in
the further refinement of the shower theory by contributing two more
articles, one on the particle angular distribution [43} and the other on
secondary showers [44].

Of no smaller virtuosity was Landau’s work dealing with the elaboration
of Fermi's idea of the statistical nature of multiple particle production in
collisions [74]. This study also represents a brilliant example of the metho-
dological unity of theoretical physics in which the solution of a problem is
accomplished by using the methods from a seemingly completely different
domain. Landau showed that the process of multiple production includes
the stage of the expansion of a “cloud”” whose dimensions are large com-
pared with the mean free path of particles in it; correspondingly, this stage
should be described by equations of relativistic hydrodynamics. The solu-
tion of these equations required a number of ingenious techniques as well
as a thorough analysis. Landau used to say that this study cost him more
effort than any other problem that he had ever solved.

Landau always willingly responded to the requests and needs of the
experimenters, e.g. by publishing the article [56] which established the
energy distribution of the ionization losses of fast particles during passage
through matter (previously only the theory of mean energy loss had existed).

Turning now to Landau’s work on macroscopic physics, we begin with
several articles representing his contribution to the physics of
magnetism.

According to classical mechanics and statistics, a change in the pattern of
movement of free electrons in a magnetic field cannot result in the appear-
ance of new magnetic properties of the system. Landau was the first to
elucidate the character of this motion in a magnetic field for the quantum
case, and to show that quantization completely changes the situation,
resulting in the appearance of diamagnetism of the free electron gas
(“Landau diamagnetism” as this effect is now termed) [4]. The same study
q}lalitatively predicted the periodic dependence of the magnetic suscepti-
bility on the intensity of the magnetic field when this intensity is high.
At the time (1930) this phenomenon had not yet been observed by anyone,
and it was experimentally discovered only later (the De Haas-Van Alphen
effect); a quantitative theory of this effect was presented by Landau in a
later paper [38].

A short article published in 1933 [12] is of a significance greatly tran-
scending the problem stated in its title — a possible explanation of the field
dependence of the magnetic susceptibility of a particular class of substances
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at low temperatures. This article was the first to introduce the concept of
antiferromagnetism (although it did not use this term) as a special phase of
magnetic bodies differing in symmetry from the paramagnetic phase;
accordingly, the transition from one state to the other_must occur at a
rigorously definite point.} This article examined the particular model of a
layered antiferromagnet with a strong ferromagnetic coupling in each
layer and a weak antiferromagnetic coupling between the layers; a quantita-
tive investigation of this case was carried out and the characteristic features
of magnetic properties in the neighbourhood of the transition point were
established. The method employed here by Landau was based on ideas
which he subsequently elaborated in the general theory of second-order
phase transitions.

Anotker paper concerns the theory of ferromagnetism. The idea of the
structure of ferromagnetic bodies as consisting of elementary regions
spontaneously magnetized in various directions (‘“‘magnetic domains,” as
the modern term goes) was expressed by P. Weiss as early as in 1907.
However, there was no suitable approach to the question of the quantitative
theory of this structure until Landau (in collaboration with E. M. Lifshitz)
[18] showed in 1935 that this theory should be constructed on the basis
of thermodynamic considerations and determined the form and dimensions
of the domains for a typical case. The same study derived the macroscopic
equation of the motion of the domain magnetization vector and, with its
aid, developed the principles of the theory of the dispersion of the magnetic
permeability of ferromagnets in an alternating magnetic field; in particular,
it predicted the effect now known as ferromagnetic resonance.

A short communication published in 1933 [10] expressed the idea of the
possibility of the ‘“‘autolocalization” of an electron in a crystal lattice within
the potential well produced by virtue of the polarization effect of the electron
itself. This idea subsequently provided the basis for the so-called polaron
theory of the conductivity of ionic crystals. Landau himself returned once
more to these problems in a later study (in collaboration with S. 1. Pekar)
[67] dealing with the derivation of the equations of motion of the polaron
in the external field.

Another short communication [14] reported on the results obtained by
Landau (in collaboration with G. Placzek) concerning the structure of the
Rayleigh scattering line in liquids or gases. As far back as the early 1920s
Brillouin and Mandel'shtam showed that, owing to scattering by sound
vibrations, this line must split into a doublet. Landau and Placzek drew
attention to the attendant necessity of the existence of scattering by entropy

+ Roughly a year earlier Néel (zvhose work was unknown to Landau)‘hfd predicted the
possibility of existence of substances which, from the magnetic standllfom ,SCZI":I_Slft of two
sublattices with opposite moments. Néel, however, did not assume that a “gthla state of
matter is involved here, and instead he simply thought that a paramagnﬁ;isti’n afPOSltlve
exchange integral at low temperatures gradually turns into a structure o g ot several
magnetic sublattices.
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fluctuations, not accompanied by any change in frequency; as a result, a
triplet should be observed instead of a doublet.}

Two of Landau’s works pertain to plasma physics. One of these two
[24] was the first to derive the transport equation with allowance for Coulomb
interaction between particles; the slowness of decrease of these forces
rendered inapplicable in this case the conventional methods for constructing
transport equations. The other work [61], dealing with plasma oscillations,
showed that, even under conditions when collisions between particles in the
plasma can be disregarded, high-frequency oscillations will still attenuate
(“Landau damping”).{

His work to compile one of the successive volumes of the Course of
Theoretical Physics was to Landau a stimulus for a thorough study of
hydrodynamics. Characteristically, he independently pondered and derived
all the basic notions and results of this branch of science. His fresh and
original perception led, in particular, to a new approach to the problem of
the onset of turbulence and he elucidated the basic aspects of the process
of the gradual development of unsteady flow with increase in the Reynolds
number following the loss of stability by laminar motion and predicted
qualitatively various alternatives possible in this case [52]. On investigating
the qualitative properties of supersonic flow around bodies, he arrived at
the unexpected discovery that in supersonic flow there must exist far from
the body not one — as had been the conventional assumption — but two
shock waves, one following the other [60]. Even in such a “classical” field
as the jet theory he succeeded in finding a new and previously unnoticed
exact solution for an axially symmetric “inundated” jet of a viscous in-
compressible fluid [51].

In Landau’s scientific creative accomplishments an eminent position is
occupied — both from the standpoint of direct significance and in terms of
the consequent physical applications — by the theory of second-order phase
transitions [29]; a first outline of the ideas underlying this theory is already
contained in an earlier communication [17].|| The concept of phase transi-
tions of various orders had first been introduced by Ehrenfest in a purely
formal manner, with respect to the order of the thermodynamic derivatives
which could undergo a discontinuity at the transition point. The question of
exactly which of these transitions can exist in reality, and what is their

1 No detailed exposition of the conclusions and results of this study was ever published in
article form. It is partly presented in the book by Landau and Lifshitz, Electrodynamics of
Continuous Media, Pergamon, Oxford 1960, §96.

1 It is interesting that this work was carried out by Landau as his response to the “philo-
logy”’ present, in his opinion, in previous studies dealing with this subject (e.g., the unjustified
replacement of divergent integrals by their principal values). It was to prove his rightness
that he occupied himself with this question.

W Landau himself applied this theory to the scattering of X-rays by crystals [32] and — in

collaboration with 1. M. Khalatnikov — to the absorption of sound in the neighbourhood of the
transition point [82].
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physical nature, had remained open, and previous interpretations had been
fairly vague and unsubstantiated. Landau was the first to point to the
profound connection between the possibility of existence of a continuous
(in the sense of variation in the body’s state) phase transitton and the jump-
like (discontinuous) change in some symmetry property of the body at the
transition point. He also showed that far from just any change in symmetry
is possible at that transition point and provided a method which makes it
possible to determine the permissible types of change in symmetry. The
quantitative theory developed by Landau was based on the assumption of
the regularity of the expansion of thermodynamic quantities in the neigh-
bourhood of the transition point. It is now clear that such a theory, which
fails to allow for possible singularities of these quantities at the transition
point, does not reflect all the properties of phase transitions. The question
of the nature of these singularities was of great interest to Landau and
during the last years of his activity he worked a great deal on this difficult
problem without, however, succeeding in arriving at any definite conclusions.

The phenomenological theory of superconductivity developed in 1950
by Landau (in collaboration with V. L.. Ginzburg) [73] also was constructed
in the spirit of the theory of phase transitions; subsequently it became, in
particular, the basis for the theory of superconducting alloys. This theory
involves a number of variables and parameters whose meaning was not
completely clear at the time it was originally developed and became under-
standable only after the appearance in 1957 of the microscopic theory of
superconductivity, which made possible a rigorous substantiation of the
Ginzburg-ILandau equations and a determination of the region of their
applicability. In this connection, the story (recounted by V. L. Ginzburg)
of an erroneous statement contained in the original article by Landau and
Ginzburg is instructive. The basic equation of the theory, defining the
effective wave function ¥ of superconducting electrons, contains the field
vector potential A in the term

1 e*A
—thy — — ¥,
2m<l c)

which is completely analogous to the corresponding term in the Schrédinger
equation. It might be thought that in the phenomenological theory the
parameter e* should represent some effective charge which does not have
to be directly related to the charge of the free electron e. Landau, however,
refuted this hypothesis by pointing out that the effective charge is not
universal and would depend on various factors (pressure, composition of
specimen, etc.); then in an inhomogeneous specimen the charge e* would
be a function of coordinates and this w ould disturb the gauge invariance of
the theory. Hence the article stated that . . . there is no reason o consider
the charge e* as different from the electronu, charge”. We nov know thag
in reality ¢* coincides with the charge of the Ceoper clcaftGRRE e,
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¢* = 2e¢ and not e. This value of ¢* could, of course, have been predicted
only on the basis of the idea of electron pairing which underlies the micro-
scopic theory of superconductivity. But the value 2e is as universal as e and
hence Landau’s argument in itself was valid.

Another of Landau’s contributions to the physics of superconductivity
was to elucidate the nature of the so-called intermediate state. The concept
of this state was first introduced by Peierls and F. London (1936) to account
for the observed fact that the transition to the superconducting state in a
magnetic field is gradual. Their theory was purely phenomenological,
however, and the question of the nature of the intermediate state had
remained open. Landau showed that this state is not a new state and that in
reality a superconductor in that state consists of successive thin layers of
normal and superconducting phases. In 1937 Landau [30] considered a
model in which these layers emerge to the surface of the specimen; using
an elegant and ingenious method he succeeded in completely determining
the shape and dimensions of the layers in such a model.t In 1938 he proposed
a new variant of the theory, according to which the layers repeatedly branch
out on emerging to the surface; such a structure should be thermodynami-
cally more favourable, given sufficiently large dimensions of the specimen.{

But the most significant contribution that physics owes to Landau is his
theory of quantum liquids. The significance of this new discipline at present
is steadily growing; there is no doubt that its development in recent decades
has produced a revolutionary effect on other domains of physics as well -
on solid-state physics and even on nuclear physics.

The superfluidity theory was created by Landau during 1940-1941 soon
after Kapitza’s discovery towards the end of 1937 of this fundamental
property of helium II. Prior to it, the premises for understanding the
physical nature of the phase transition observed in liquid helium had been
essentially lacking and it is not surprising that the previous interpretations
of this phenomenon now seem even naive.|| The completeness with which
the theory of helium I1 had been constructed by Landau from the very
beginning is remarkable: already his first classic paper [46] on this subject
contained practically all the principal ideas of both the microscopic theory
of helium II and the macroscopic theory constructed on its basis — the
thermodynamics and hydrodynamics of this fluid.

Underlying Landau’s theory is the concept of quasiparticles (elementary
excitations) constituting the energy spectrum of helium II. Landau was in
fact the first to pose the question of the energy spectrum of a Macroscopic

1'. Landau himself wrote concerning this matter that “‘amazingly enough an exact determi-
nation of the shape of the layers proves to be possible’ [30]

1 A detailed description of this work was published in 1943 [49].

i Thus, Landau himself in his work on the theory of phase transitions [29] considered
whether helium I is a liquid crystal, even though he emphasized the dubiousness of this
assumption.
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body in such a very general form, and it was he, too, who discovered the
nature of the spectrum for a quantum fluid of the type to which liquid
helium (He? isotope) belongs — or, as it is now termed, of the Bose type.
In his 1941 work Landau assumed that the spectrum of elementary excita-
tions consists of two branches: phonons, with a linear dependence of energy
& on momentum p, and ‘“‘rotons”, with a quadratic dependence, separated
from the ground state by an energy gap. Subsequently he found that such
a form of spectrum is not satisfactory from the theoretical standpoint
(as it would be unstable) and careful analysis of the more complete and
exact experimental data that had by then become available led him in 1946
to establish the now famous spectrum containing only one branch in
which the “‘rotons” correspond to a minimum on the curve of ¢(p). The
macroscopic concepts of the theory of superfluidity are widely known.
Basically they reduce to the idea of two motions simultaneously occurring
in the fluid - “normal” motion and “‘superfluid” motion, which may be
visualized as motions of two “fluid components”’. Normal motion is
accompanied by internal friction, as in conventional fluids. The determina-
tion of the viscosity coefficient represents a kinetic problem which requires
an analysis of the processes of the onset of an equilibrium in the “gas of
quasiparticles”; the principles of the theory of the viscosity of helium 11
were developed by Landau (in collaboration with I. M. Khalatnikov) in
1949 [69, 70]. Lastly, yet another investigation (carried out in collaboration
with I. Ya. Pomeranchuk) [64] dealt with the problem of the behaviour of
extraneous atoms in helium; it was shown, in particular, that any atom of
this kind will become part of the “normal component” of the fluid regard-
less of whether the impurity substance itself does or does not display the
property of superfluidity — contrary to the incorrect view previously held
in the literature.

The liquid isotope He3 is a quantum liquid of another type — the Fermi
type as it is now termed. Although its properties are not as.striking as the
properties of liquid He#, they are no less interesting from the standpoint of
basic theory. A theory of liquids of this kind was developed by Landau and
presented by him in three papers published during 1956-1958. The first two
of these [90, 91] established the nature of the energy spectrum of Fermi
liquids, considered their thermodynamic properties and established the
kinetic equation for the relaxation processes occurring in these liquids. His
study of the kinetic equation led Landau to predict a special type of vibra-

+ Some of the ideas of the “two-component” macroscopic deseription of liquid helium
were introduced independently of Landau by L. Tisza (although without providing a clear
physical interpretation of them). His detailed article puplished in Fl:al:)cr‘? ;“ 1940 was,
owing to wartime conditions, not received in the USSR until 1943 and U t:te]‘lvt:r no.tt_? of 1938
in the Comptes rendus of the Paris Académie des Sciences had unfortun_ad x be'rrlmmed un-
noticed. A criticism of the quantitative aspects of Tisza’s theory was provided by Landau in
the article [66].
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tional process in liquid He® in the neighbourhood of absolute zero, which
he termed zeroth sound. T'he third paper [95] presented a rigorous micro-
scopic substantiation of the transport equation, whose earlier derivation had
contained a number of intuitive assumptions.

Concluding this brief and far from complete survey, it only remains to be
repeated that to physicists there is no need to emphasize the significance of
Landau’s contribution to theoretical physics. His accomplishments are of
lasting significance and will for ever remain part of science.






CHAPTER I
THE EQUATIONS OF MOTION

§l. Generalised co-ordinates

ONE of the fundamental concepts of mechanics is that of a particle.; By this
we mean a body whose dimensions may be neglected in describing its motion,
The possibility of so doing depends, of course, on the conditions of the prob-
lem concerned. For example, the planets may be regarded as particles in
considering their motion about the Sun, but not in considering their rotation
about their axes.

The position of a particle in space is defined by its radius vector r, whose
components are its Cartesian co-ordinates x, ¥, 2. The derivative v = dr/dt
of r with respect to the time # is called the velocity of the particle, and the
second derivative d2r/di2 is its acceleration. In what follows we shall, as is
customary, denote differentiation with respect to time by placing a dot above
a letter: v = f.

To define the position of a system of IV particles in space, it is necessary to
specify IV radius vectors, i.e. 3N co-ordinates. The number of independent
quantities which must be specified in order to define uniquely the position of
any system is called the number of degrees of freedom; here, this number is
3N. These quantities need not be the Cartesian co-ordinates of the particles,
and the conditions of the problem may render some other choice of co-
ordinates more convenient. Any s quantities g1, gz, ..., gs which completely
define the position of a system with s degrees of freedom are called generalised
co-ordinates of the system, and the derivatives ¢; are called its generalised
velocities.

When the values of the generalised co-ordinates are specified, however,
the “mechanical state” of the system at the instant considered is not yet
fietermined in such a way that the position of the system at subsequent
Instants can be predicted. For given values of the co-ordinates, the system
can have any velocities, and these affect the position of the system after an
infinitesimal time interval dt.

If all the co-ordinates and velocities are simultaneously specified, it is
known from experience that the state of the system is completely determined
and that its subsequent motion can, in principle, be calculated. Mathematic-
ally, this means that, if all the co-ordinates g and velocities ¢ are given at
some instant, the accelerations § at that instant are uniquely defined.:

1 Sometimes called in Russian a material point.
t For brevity, we shall often conventionally denote by g the set of all the co-ordinates
q1, g3, ..., gs, and similarly by § the set of all the velocities,

1



2 The Equations of Motion §2

The relations between the accelerations, velocities and co-ordinates are
called the equations of motion. They are second-order differential equations
for the functions ¢(¢), and their integration makes possible, in principle, the
determination of these functions and so of the path of the system.

§2. The principle of least action

The most general formulation of the law governing the motion of mech-
anical systems is the principle of least action or Hamiltor’s principle, according
to which every mechanical system is characterised by a definite function
L(q1, g2, --» Gss G1, G2» --s G5y 1), or briefly L(g, ¢, £), and the motion of the
system is such that a certain condition is satisfied.

Let the system occupy, at the instants #1 and #, positions defined by two
sets of values of the co-ordinates, g® and ¢@. Then the condition is that the
system moves between these positions in such a way that the integral

123
S=[Lggnd 2.1

L

takes the least possible value.t The function L is called the Lagrangian of
the system concerned, and the integral (2.1) is called the action.

The fact that the Lagrangian contains only ¢ and ¢, but not the higher
derivatives §, g, etc., expresses the result already mentioned, that the mech-
anical state of the system is completely defined when the co-ordinates and
velocities are given.

Let us now derive the differential equations which solve the problem of
minimising the integral (2.1). For simplicity, we shall at first assume that the
system has only one degree of freedom, so that only one function ¢(f) has to
be determined.

Let g = g(¢) be the function for which S is a minimum. This means that S
is increased when g(f) is replaced by any function of the form

q(t) + 8q(2), (2.2)

where 8¢(¢) is a function which is small everywhere in the interval of time
from #; to t2; 8¢(f) is called a variation of the function ¢(#). Since, fort =1
and for t = t», all the functions (2.2) must take the values ¢@) and ¢ respec-
tively, it follows that

Sq(ts) = dq(t2) = 0. (2.3)

t It should be mentioned that this formulation of the principle of least action is not always
valid for the entire path of the system, but only for any sufficiently short segment of t.h? path.
The integral (2.1) for the entire path must have an extremurt, but not}r}:ecessa; ily a minimum.
This fact, however, is of no importance as regards the derivation of the equations of motion,

since only the extremum condition is used.
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The change in .S when ¢ is replaced by g+ 8¢ is

io ty

[ L(g+58g,g+8¢,7) dt— | Lig. ¢, 9.

Y 4

When this difference is expanded in powers of 8¢ and 8¢ in the integrand, the
leading terms are of the first order. The necessary condition for S to have a
minimumt is that these terms (called the first variation, or simply the varia-
tion, of the integral) should be zero. Thus the principle of least action may
be written in the form

ty
88 = 8 [ L(g,¢,t)dz = 0, 2.4)
tl
or, effecting the variation,
g
f ~s aLS')dt 0
i JL— = (.
(89 - oG .

1
Since 8¢ = ddg;dt, we obtain, on integrating the second term by parts,

gy
oL 1t oL d oL
&g = [—_Sq] - f(——~—.) 8gdt = 0. (2.3)
¢ "l og dt &g )
1
The conditions (2.3) show that the integrated term in (2.5) is zero. There
remains an integral which must vanish for all values of 8¢. This can be so only
if the integrand is zero identically. Thus we have
d ( 8L) oL
dt\og/) o
When the system has more than one degree of freedom, the s different
functions g;(z) must be varied independently in the principle of least action.
We then evidently obtain s equations of the form
. 3L) = 0 =112 2.6
=l ) =0 (=12..9 (2.6)
These are the required differential equations, called in mechanics Lagrange’s
equations.y If the Lagrangian of a given mechanical system is known, the
equations (2.6) give the relations between accelerations, velocities and co-
ordinates, i.e. they are the equations of motion of the system.

T Or, in general, an extremum.
{ In the calculus of variations they are Euler’s equations for the formal problem of deter-
mining the extrema of an integral of the form (2.1).
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Mathematically, the equations (2.6) constitute a set of s second-order
equations for s unknown functions ¢(t). The general solution contains 2s
arbitrary constants. To determine these constants and thereby to define
uniquely the motion of the system, it is necessary to know the initial conditions
which specify the state of the system at some given instant, for example the
initial values of all the co-ordinates and velocities.

Let a mechanical system consist of two parts 4 and B which would, if
closed, have Lagrangians L4 and Lp respectively. Then, in the limit where
the distance between the parts becomes so large that the interaction between
them may be neglected, the Lagrangian of the whole system tends to the value

lmL = La+ L. (2.7)

This additivity of the Lagrangian expresses the fact that the equations of mo-
tion of either of the two non-interacting parts cannot involve quantities per-
taining to the other part.

It is evident that the multiplication of the Lagrangian of a mechanical
systém by an arbitrary constant has no effect on the equations of motion.
From this, it might seem, the following important property of arbitrariness
can be deduced: the Lagrangians of different isolated mechanical systems
may be multiplied by different arbitrary constants. The additive property,
however, removes this indefiniteness, since it admits only the simultancous
multiplication of the Lagrangians of all the systems by the same constant.
This corresponds to the natural arbitrariness in the choice of the unit of mea-
surement of the Lagrangian, a matter to which we shall return in §.

One further general remark should be made. Let us consider two functions
L'(g, ¢, t) and I(g, ¢, t), differing by the total derivative with respect to time
of some function f (g, t) of co-ordinates and time:

d
L'(g¢1) = Lad )+ fla1). (2.8)
The integrals (2.1) calculated from these two functions are such that
ty ta o
e f L'(g,¢,t)dt = f L(g, ¢, t)dt+ fﬁ{dt = S+£(¢®, t2)—f(g™ tr)
2% t) i

1.e. they differ by a quantity which gives zero on variation, so that the condi-
tions 8S’ = 0 and 8S = 0 are equivalent, and the form of the equations of
motion is unchanged. Thus the Lagrangian is defined only to within an
additive total time derivative of any function of co-ordinates and time,

§3. Galileo’s relativity principle

In order to consider mechanical phenomen
frame of reference. The laws of motion are 1R gener
m——————— e

a it is necessary to choose a
1 different in form for
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different frames of reference. When an arbitrary frame of reference is chosen,
it may happen that the laws governing even very simple phenomena become
very complex. The problem naturally arises of finding a frame of reference
in which the laws of mechanics take their simplest form.

If we were to choose an arbitrary frame of reference, space would be in-
homogeneous and anisotropic. This means that, even if a body interacted
with no other bodies, its various positions in space and its different orienta-
tions would not be mechanically equivalent. The same would in general be
true of time, which would likewise be inhomogeneous; that is, different in-
stants would not be equivalent. Such properties of space and time would
evidently complicate the description of mechanical phenomena. For example,
a free body (i.e. one subject to no external action) could not remain at rest:
if its velocity were zero at some instant, it would begin to move in some direc-
tion at the next instant.

It is found, however, that a frame of reference can always be chosen in
which spacc is homogeneous and isotropic and time is homogeneous. This is
called an inertial frame. In particular, in such a frame a free body which is at
rest at some instant remains always at rest.

We can now draw some immediate inferences concerning the form of the
Lagrangian of a particle, moving freely, in an inertial frame of reference.
The homogeneity of space and time implies that the Lagrangian cannot con-
tain explicitly either the radius vector r of the particle or the time ¢, i.e. L
must be a function of the velocity v only. Since space is isotropic, the Lagran-
gian must also be independent of the direction of v, and is therefore a func-
tion only of its magnitude, i.e. of v2 = o2:

L = L{z?). (3.1)

Since the Lagrangian is independent of r, we have oLj/or = 0, and so

Lagrange’s equation ist
d /oL
A
dt\ ov

whence JL/dv = constant. Since dL/dv is a function of the velocity only, it
follows that

v = constant. (3.2)

‘Thus we conclude that, in an inertial frame, any free motion takes place
with a velocity which is constant in both magnitude and direction. This is
the law of inertia.

If we consider, besides the inertial frame, another frame moving uniformly
in a straight line relative to the inertial frame, then the laws of free motion in

t The derivative of a scalar quantity with respect to a vector is defined as the vector whose
components are equal to the derivatives of the scalar with respect to the corresponding
components of the vector.
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the other frame will be the same as in the original frame: free motion takes
place with a constant velocity.

Experiment shows that not only are the laws of free motion the same in
the two frames, but the frames are entirely equivalent in all mechanical re-
spects. Thus there is not one but an infinity of inertial frames moving, relative
to one another, uniformly in a straight line. In all these frames the properties
of space and time are the same, and the laws of mechanics are the same. This
constitutes Galileo’s relativity principle, one of the most important principles
of mechanics.

The above discussion indicates quite clearly that inertial frames of refer-
ence have special properties, by virtue of which they should, as a rule, be
used in the study of mechanical phenomena. In what follows, unless the con-
trary is specifically stated, we shall consider only inertial frames.

The complete mechanical equivalence of the infinity of such frames shows
also that there is no “absolute” frame of reference which should be preferred
to other frames.

The co-ordinates r and t’ of a given point in two different frames of refer-
ence K and K’, of which the latter moves relative to the former with velocity
V, are related by

r=r'+Vi. (3.3)
Here it is understood that time is the same in the two frames:
L=t (3.4)

The assumption that time is absolute is one of the foundations of classical
mechanics.}

Formulae (3.3) and (3.4) are called a Galilean transformation. Galileo’s
relativity principle can be formulated as asserting the invariance of the mech-
anical equations of motion under any such transformation.

§4. The Lagrangian for a free particle

Let us now go on to determine the form of the Lagrangian, and consider
first of all the simplest case, that of the fiee motion of a particle relative to
an inertial frame of reference. As we have already seen, the Lagrangian in
this case can depend only on the square of the velocity. To discover the form
of this dependence, we make use of Galileo’s relativity principle. If an inertial
frame K is moving with an infinitesimal velocity € relative to another inertial
frame K’, then v/ = v+e€. Since the equations of motion must have the same
form in every frame, the Lagrangian L(22) must be converted by this trans-
formation into a function L’ which differs from L(22), if at all, only by the
total time derivative of a function of co-ordinates and time (see the end of

§2)-

1 This assumption does not hold goed in relativistic mech

anics.
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We have L' = I(v'2) = L(v2+2v * € +€?). Expanding this expression in
powers of € and neglecting terms above the first order, we obtain

oL
L(»'?) = L(tv?¥)+—2v-e.
0v?

The second term on the right of this equation is a total time derivative only
if it is a linear function of the velocity v. Hence 0L/0%2 is independent of the
velocity, i.e. the Lagrangian is in this case proportional to the square of the
velocity, and we write it as

L = Yme2. 4.1)

From the fact that a Lagrangian of this form satisfies Galileo’s relativity
principle for an infinitesimal relative velocity, it follows at once that the
Lagrangian is invariant for a finite relative velocity V of the frames K and K’.
For

L' = 1mv'2 = Im(v+ V)2 = dmo2+mv. V+1imlZ,
or
L' = L+d(mr- V+imV?t)/de.

The second term is a total time derivative and may be omitted.

The quantity 7 which appears in the Lagrangian (4.1) for a freely moving
particle is called the ass of the particle. The additive property of the Lagran-
gian shows that for a system of particles which do not interact we havet

L= Slmze. 4.2)

It should be emphasised that the above definition of mass becomes mean-
ingful only when the additive property is taken into account. As has been
mentioned in §2, the Lagrangian can always be multiplied by any constant
without affecting the equations of motion. As regards the function (4.2), such
multiplication amounts to a change in the unit of mass; the ratios of the masses
of different particles remain unchanged thereby, and it is only these ratios
which are physically meaningful.

It is easy to sce that the mass of a particle cannot be negative. For, according
to the principle of least action, the integral

2
= J TmeZ dt.
1

has a minimum for the actual motion of the particle in space from point 1 to
point 2. If the mass were negative, the action integral would take arbitrarily
large negative values for a motion in which the particle rapidly left point 1
and rapidly approached point 2, and there would be no minimum.t

) T We shall use the suffixes q, b, ¢, ... to distinguish the various particles, and i, k, 1, ... to
distinguish the co-ordinates.
$ The argument is not affected by the point mentioned in the first footnote to §2; for
m < 0, the integral could not have a minimum even for a short segment of the path.
1
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It is useful to notice that
02 = (dl/dt2 = (dI)2 (dr)2. 4.3)
Hence, to obtain the Lagrangian, it is sufficient to find the square of the ele-

ment of arc d/ in a given system of co-ordinates. In Cartesian co-ordinates,
for example, di2 = dx?+dj2+dz?, and so

L = Im(x2+3y2+22). 4.4)
In cylindrical co-ordinates dI2 = dr2+72 d¢>+ d=2, whence
L = Ym(i2 4+ r2g2 + 22). (4.5)
In spherical co-ordinates d/2 = d72+72 d62+72 sin%60 d¢?, and
L = 1m(#2 + 1262 + 1242 sin26). (4.6)

§5. The Lagrangian for a system of particles

Let us now consider a system of particles which interact with one another
but with no other bodies. This is called a closed system. It is found that the
interaction between the particles can be described by adding to the Lagran-
gian (4.2) for non-interacting particles a certain function of the co-ordinates,
which depends on the nature of the interaction.t Denoting this function

by — U, we have
L — Z%ma'vaz— U(rl) re, "')’ (5.1)

where r, is the radius vector of the ath particle. This is the general form of
the Lagrangian for a closed system. The sum T = X imgvq? is called the
kinetic energy, and U the potential energy, of the system. The significance
of these names is explained in §6.

The fact that the potential energy depends only on the positions of the
particles at a given instant shows that a change in the position of any particle
instantaneously affects all the other particles. We may say that the inter-
actions are instantaneously propagated. The necessity for interactions in
classical mechanics to be of this type is closely related to the premises upon
which the subject is based, namely the absolute nature of time and Galileo’s
relativity principle. If the propagation of interactions were not instantaneous,
but took place with a finite velocity, then that velocity would be different in
different frames of reference in relative motion, since the absoluteness of
time necessarily implies that the ordinary law of composition of velocities is
applicable to all phenomena. The laws of motion for interacting bodies would
then be different in different inertial frames, a result which would contradict
the relativity principle.

In §3 only the homogeneity of time has been spoken of. 'The form of the
Lagrangian (5.1) shows that time is both homogeneous and 1sotropig, i.e. its

e = - -wistic mechanics is no :
+ This statement is valid in classical mechanics. Relativist t considered
in this book.
P ——
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properties are the same in both directions. For, if ¢ is replaced by —1, the La-
grangian is unchanged, and therefore so are the equations of motion. In other
words, if a given motion is possible in a system, then so is the reverse motion
(that is, the motion in which the system passes through the same states in
the reverse order). In this sense all motions which obey the laws of classical
mechanics are reversible.

Knowing the Lagrangian, we can derive the equations. of motion:

d oL oL
LA o YR (5.2)
dt ov, Org

Substitution of (5.1) gives
mgdvg/dt = —~¢cU/éx,. (5.3)

In this form the equations of motion are called Vewton’s equations and form
the basis of the mechanics of a system of interacting particles. The vector

F = —8Uor, (5.4)

which appears on the right-hand side of equation (5.3) is called the force on
the ath particle. Like U, it depends only on the co-ordinates of the particles,
and not on their velocities. The equation (5.3) therefore shows that the acceler-
ation vectors of the particles are likewise functions of their co-ordinates only.

The potential energy is defined only to within an additive constant, which
has no effect on the equations of motion. This is a particular case of the non-
uniqueness of the Lagrangian discussed at the end of §2. The most natural
and most usual way of choosing this constant is such that the potential energy
tends to zero as the distances between the particles tend to infinity.

If we use, to describe the motion, arbitrary generalised co-ordinates (i)
instead of Cartesian co-ordinates, the following transformation is needed to
obtain the new Lagrangian:

d
Xa = fa(Qly G2y -y QS)) Xq = Z E%Q'k’ etc.
k

Substituting these expressions in the function L = 32 ma(%a2+ a2+ 242) - U,
Wwe obtain the required Lagrangian in the form

L= %gcaik@)éiék— Ulg), (3.5)

where the ay;, are functions of the co-ordinates only. The kinetic energy in
generalised co-ordinates is still a quadratic function of the velocities, but it
may depend on the co-ordinates also.

Hitherto we have spoken only of closed systems. Let us now consider a
system A which is not closed and interacts with another system B executing
a given motion. In such a case we say that the system 4 moves in a given
external field (due to the system B). Since the equations of motion are obtained



10 The Equations of Motion §5

from the principle of least action by independently varying each of the co-
ordinates (i.e. by proceeding as if the remainder were given quantities), we
can find the Lagrangian L4 of the system 4 by using the Lagrangian L of
the whole system 4+ B and replacing the co-ordinates gz therein by given
functions of time.

Assuming that the system A+ B is closed, we have L = T a(qa, ga)+
+T(g, 8) — U(g, gB), where the first two terms are the kinetic energies of
the systems 4 and B and the third term is their combined potential energy.
Substituting for gp the given functions of time and omitting the term
T[gs(1), gr(t)] which depends on time only, and is therefore the total time
derivative of a function of time, we obtain Ls = T (g, §a)— Ulg4, ¢5(2)]-
Thus the motion of a system in an external field is described by a Lagrangian
of the usual type, the only difference being that the potential energy may
depend explicitly on time.

For example, when a single particle moves in an external field, the general
form of the Lagrangian is

L = im2— Uz, t), (5.6)
and the equation of motion is
mv = —oU/cr. (5.7)

A field such that the same force F acts on a particle at any point in the field
is said to be uniform. The potential energy in such a field is evidently

U= -F.r. (5-8)

To conclude this section, we may make the following remarks concerning
the application of Lagrange’s equations to various problems. It is often
necessary to deal with mechanical systems in which the interaction between
different bodies (or particles) takes the form of constraints, i.e. restrictions on
their relative position. In practice, such constraints are effected by means of
rods, strings, hinges and so on. This introduces a new factor into the problem,
in that the motion of the bodies results in friction at their points of contact,
and the problem in general ceases to be one of pure mechanics (see §25). In
many cases, however, the friction in the system is so slight that its effect on
the motion is entirely negligible. If the masses of the constraining elements of
the system are also negligible, the effect of the constraints is simply to reduce
the number of degrees of freedom s of the system to a value less than 3N. To
determine the motion of the system, the Lagrangian (5.5) can again be used,
with a set of independent generalised co-ordinates equal in number to the
actual degrees of freedom.

PROBLEMS

Find the Lagrangian for each of the following systems when placed in a uniform gravita-
tional field (acceleration g).



8§ The Lagrangian for a system of particles 11

ProBLEM 1. A coplanar double pendulum (Fig. 1).

s

————————x

e

N

Frc. 1

SoLUTION. We take as co-ordinates the angles ¢1 and ¢2 which the strings /1 and Iz make
with the vertical. Then we have, for the particle m1, T1 = $ml?s?, U = —mgh cos ¢1.In
order to find the kinetic energy of the second particle, we express its Cartesian co-ordinates
%2, ¥2 (with the origin at the point of support and the y-axis vertically downwards) in terms
of the angles ¢1and ¢2: x2 = l1 sin ¢1-+Iz sin $2, y2 = l1 cos ¢1-4-I2 cos ¢2. Then we find

T2 = dmy(xe2-4427)
= dma[l2¢12+ 12§22 4211l cos(d1—de)dide].

Finally
L = (1 +me)ls%§12 -+ mala?Jo2+ mahilodrdhe cos($r —da) +(m1+me)gh cos ¢1-+megls cos de.

PRroBLEM 2. A simple pendulum of mass msz, with a mass # at the point of support which
can move on a horizontal line lying in the plane in which m2 moves (Fig. 2).

‘?__

m
FiG. 2

SoLuTIoN. Using the co-ordinate x of mi and the angle ¢ between the string and the
vertical, we have

L = }(m1+ma)i2+3ma(l§2+21% cos $)+magl cos ¢

PROBU}M 3. A simple pendulum of mass m whose point of support (a) moves uniformly
on a Vgrtlcal circle with constant frequency y (Fig. 3), (b) oscillates horizontally in the plane
of motion of the pendulum according to the law x = a cos yt, (c) oscillates vertically accord-
Ing to the law y = a cos yz.

SoLution. (a) The co-ordinates of m are x = a cos yt+lsing, y = —a sinyt+1 cos $.
e Lagrangian is
L = 3ml2d2 4mig,2 sin(¢—yt) +mgl cos ¢;

here terms depending only on time have been omitted, together with the total time derivative
of mlay cos(¢—r1)-
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(b) The co-ordinates of m are x = a cos yt+1sin $, y = I cos ¢. The Lagrangian is (omit-
ting total derivatives)
) L = }ml*§2+mlay® cos yt sin ¢-+mgl cos ¢.
(c) Similarly
L = }ml2f2-+mlay? cos yt cos ¢-+mgl cos ¢.

——————— e

Fic. 3

PROBLEM 4. The system shown in Fig. 4. The particle iz moves on a vertical axis and the
whole systern rotates about this axis with a constant angular velocity Q.

A
o
o a
m 2,
2 (]
g
Fic. 4

SOLUTION. Let 8 be the angle between one of the segments a and the vertical, and ¢ the
angle of rotation of the system about the axis; ¢ = Q. For each particle m, the infinitesimal
displacement is given by dh? = a?d62+a? sin? 8 d¢2 The distance of mz from the point

of support A is 2a cos 6, and so dlz = —2a sin § df. The Lagrangian is
L = m1a%(62-+ Q2 sin26)-+-2mea?? sin?6-+2(m1+ms)ga cos 0.



CHAPTER 11

CONSERVATION LAWS

§6. Energy

DURING the motion of a mechanical system, the 2s quantities ¢; and g
(t = 1, 2, ..., s) which specify the state of the system vary with time. There
exist, however, functions of these quantities whose values remain constant
during the motion, and depend only on the initial conditions. Such functions
are called integrals of the motion.

The number of independent integrals of the motion for a closed mechanical
system with s degrees of freedom is 25— 1. This is evident from the following
simple arguments. The general solution of the equations of motion contains
25 arbitrary constants (see the discussion following equation (2.6)). Since the
equations of motion for a closed system do not involve the time explicitly,
the choice of the origin of time is entirely arbitrary, and one of the arbitrary
constants in the solution of the cquations can always be taken as an additive
constant #o in the time. Eliminating ¢+ o from the 2s functions ¢; = gi(t + 1o,
Ci, G, ..., Cos 1), i = it + 0, Cy, Cs, ..., Cas_1), we can express the 2s—1
arbitrary constants Cy, Cs, ..., Cas_1 as functions of ¢ and ¢, and these functions
will be integrals of the motion.

Not all integrals of the motion, however, are of equal importance in mech-
anics. There are some whose constancy is of profound significance, deriving
from the fundamental homogeneity and isotropy of space and time. The
quantities represented by such integrals of the motion are said to be conserved,
and have an important common property of being additive: their values for a
System composed of several parts whose interaction is negligible are equal
to the sums of their values for the individual parts. .
~ It is to this additivity that the quantities concerned owe their especial
Importance in mechanics. Let us suppose, for example, that two bodies
interact during a certain interval of time. Since each of the additive integrals
of the whole system is, both before and after the interaction, equal to the
sum of its values for the two bodies separately, the conservation laws for these
quantities immediately make possible various conclusions regarding the state
of the bodies after the interaction, if their states before the interaction are
known.

Let us consider first the conservation law resulting from the homogeneity
of time. By virtue of this homogeneity, the Lagrangian of a -'7sed system
df)es not depend explicitly on time. The total time derivative of the Lagran-
gian can therefore be written

dL oL oL
a0 Za*qiq:'i' Z i qi-

i i

13
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If L depended explicitly on time, a term 8L/d¢ would have to be added on
the right-hand side. Replacing 3L/ d¢s, in accordance with Lagrange’s equa-
tions, by (d/d¢) 8L/d¢;, we obtain

dt zq’dt( ) z_q‘
_Zdt( 3qi)

or

dt(z q'_—L) o

Hence we sece that the quantity

£ = ———L 6.1
;t_h o (6.1)

remains constant during the motion of a closed system, i.e. it is an integral
of the motion; it is called the energy of the system. The additivity of the
energy follows immediately from that of the Lagrangian, since (6.1) shows
that it is a linear function of the latter.

The law of conservation of energy is valid not only for closed systems, but
also for those in a constant external field (i.e. one independent of time): the
only property of the Lagrangian used in the above derivation, namely that
it does not involve the time explicitly, is still valid. Mechanical systems whose
energy is conserved are sometimes called conservative systems.

As we have seen in §5, the Lagrangian of a closed system (or one in a
constant field) is of the form L = T(g, §)— U(g), where T is a quadratic
function of the velocities. Using Euler’s theorem on homogeneous functions,
we have

Substituting this in (6.1) gives
E = T(q.9)+ U(g); (62)
in Cartesian co-ordinates,

E = > imwe+ U(ry, ra, ...). (6.3)
a



§7 Momentum 15

Thus the energy of the system can be written as the sum of two quite different
terms: the kinetic energy, which depends on the velocities, and the potential
energy, which depends only on the co-ordinates of the particles.

§7. Momentum

A second conservation law follows from the komogeneity of space. By virtue
of this homogeneity, the mechanical properties of a closed system are un-
changed by any parallel displacement of the entire system in space. Let us
therefore consider an infinitesimal displacement €, and obtain the condition
for the Lagrangian to remain unchanged.

A parallel displacement is a transformation in which every particle in the
system is moved by the same amount, the radius vector r becoming r+-e.
The change in L resulting from an infinitesimal change in the co-ordinates,
the velocities of the particles remaining fixed, is

a a

where the summation is over the particles in the system. Since € is arbitrary,
the condition 8L = 0 is equivalent to

S éLjéxa = 0. (7.1)

From Lagrange’s equations (5.2) we therefore have
doL d oL 0
dt v, dt L Bve

a a

Thus we conclude that, in a closed mechanical system, the vector

P= > éLev, (7.2)

remains constant during the motion; it is called the momentum of the system.
Differentiating the Lagrangian (5.1), we find that the momentum is given in
terms of the velocities of the particles by

B v, (7.3)

The additivity of the momentum is evident. Moreover, unlike the energy,
the momentum of the system is equal to the sum of its values p, = mgv, for
the individual particles, whether or not the interaction between them can be
neglected.

The three components of the momentum vector are all conserved only in
the absence of an external field. The individual components may be conserved
even in the presence of a field, however, if the potential energy in the field does
not depend on all the Cartesian co-ordinates. The mechanical properties of
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the system are evidently unchanged by a displacement along the axis of a
co-ordinate which does not appear in the potential energy, and so the corre-
sponding component of the momentum is conserved. For example, in a uni-
form field in the z-direction, the x and 3 components of momentum are
conserved.

The equation (7.1) has a simple physical meaning. The derivative
OL[org = —8U/dr, is the force F, acting on the ath particle. Thus equation
(7.1) signifies that the sum of the forces on all the particles in a closed system
is zero:

SF, = 0. (7.4)

In particular, for a system of only two particles, F; +F, = 0: the force exerted
by the first particle on the second is equal in magnitude, and opposite in direc-
tion, to that exerted by the second particle on the first. This is the equality
of action and reaction (Newton’s third law).

If the motion is described by generalised co-ordinates g;, the derivatives
of the Lagrangian with respect to the generalised velocities

pi = 0Ljég; (7.5)

are called generalised momenta, and its derivatives with respect to the general-
ised co-ordinates

F, = oL/eg; (7.6)
are called generalised forces. 1In this notation, Lagrange’s equations are
b= F. (7.7)

In Cartesian co-ordinates the generalised momenta are the components of the
vectors pg. In general, however, the p; are linear homogeneous functions of
the generalised velocities ¢;, and do not reduce to products of mass and velo-
city.

PROBLEM

A particle of mass m moving with velocity vy leaves a half-space in which its potential energy
is a constant Uj and enters another in which its potential energy is a different constant Ua.
Determine the change in the direction of motion of the particle.

SoLuTioN. The potential energy is independent of the co-ordinates whose axes are parallel
to the plane separating the half-spaces. The component of momentum in that plane is
therefore conserved. Denoting by 81 and 82 the angles between the normal to the plane and
the velocities vi and vz of the particle before and after passing the plane, we have v; sin 61
= vz sin f2. The relation between z1 and 72 is given by the law of conservation of energy,

and the result is ..
in 6 2
sin by _ /\/[1+ (UI—U2)]-'
sin B2 muv2

§8. Centre of mass

The momentum of a closed mechanical system h
different (inertial) frames of reference. If a frame K’ moves ¥

as different values jp
ith velocity v

T Te—
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relative to another frame K, then the velocities vg' and v, of the particles
relative to the two frames are such that v, = v, + V. The momenta P and P’
in the two frames are therefore related by

P= Zmava =) Zmuva'+V Zm,,,
a a a

or

P=P+V Dmy,. 8.1)

In particular, there is always a frame of reference K’ in which the total
momentum is zero. Putting P’ = 0 in (8.1), we find the velocity of this frame:

V="P Zma = Zmava/ Zma. (8.2)

If the total momentum of a mechanical system in a given frame of reference
is zero, it is said to be at rest relative to that frame. This is a natural generali-
sation of the term as applied to a particle. Similarly, the velocity V given by
(8.2) is the velocity of the ‘‘motion as a whole” of a mechanical system whose
momentum is not zero. Thus we see that the law of conservation of momen-
tum makes possible a natural definition of rest and velocity, as applied to a
mechanical system as a whole.

Formula (8.2) shows that the relation between the momentum P and the
velocity V of the system is the same as that between the momentum and velo-
city of a single particle of mass u = 2img, the sum of the masses of the particles
in the system. This result can be regarded as expressing the additivity of mass.

The right-hand side of formula (8.2) can be written as the total time deriva-
tive of the expression

R = D>matal D my. (8.3)

We can say that the velocity of the system as a whole is the rate of motion in
space of the point whose radius vector is (8.3). This point is called the centre
of mass of the system.

The law of conservation of momentum for a closed system can be formu-
lated as stating that the centre of mass of the system moves uniformly in a
straight line. In this form it generalises the law of inertia derived in §3 for a
single free particle, whose “centre of mass” coincides with the particle itself.

In considering the mechanical properties of a closed system it is natural
to use a frame of reference in which the centre of mass is at rest. This elimi-
nates a uniform rectilinear motion of the system as a whole, but such motion
is of no interest.

The energy of a mechanical system which is at rest as a whole is usually
called its internal energy E;. This includes the kinetic energy of the relative
motion of the particles in the system and the potential energy of their inter-

action. The total energy of a system moving as a whole with velocity ¥ can
be written

E = juV2+E;. (8.4)
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Although this formula is fairly obvious, we may give a direct proof of it.
The energies E and E’ of a mechanical system in two frames of reference K
and K’ are related by

E=

1o

z ”1(1'0(1,2 il U
a

DOjpt

Z m(va' + V)2 + U

a

=1Iul2+V. Zmava' +3 Zmava'2+ U
a a

= E+V-P +}ul2 (8.5)

This formula gives the law of transformation of energy from one frame to
another, corresponding to formula (8.1) for momentum. If the centre of mass
is at rest in K', then P’ = 0, E’ = E;, and we have (8.4).

PROBLEM

Find the law of transformation of the action S from one inertial frame to another.

Sorution. The Lagrangian is equal to the difference of the kinetic and potential energies,
and is evidently transformed in accordance with a formula analogous to (8.5):
L=L+4V- -P+3uV2
Integrating this with respect to time, we obtain the required law of transformation of the
action:

S = S’ +puV R +3ul2,

where R’ is the radius vector of the centre of mass in the frame K’.

§9. Angular momentum

Let us now derive the conservation law which follows from the isotropy of
space. 'This isotropy means that the mechanical properties of a closed system
do not vary when it is rotated as a whole in any manner in space. Let us there-
fore consider an infinitesimal rotation of the system, and obtain the condition
for the Lagrangian to remain unchanged.

We shall use the vector 8¢ of the infinitesimal rotation, whose magnitude
is the angle of rotation 8¢, and whose direction is that of the axis of rotation
(the direction of rotation being that of a right-handed screw driven along 8¢).

Let us find, first of all, the resulting increment in the radius vector from
an origin on the axis to any particle in the system undergoing rotation. The
linear displacement of the end of the radius vector is related to the angle by
|8r| = 7 sin 6 8 (Fig. 5). The direction of 8r is perpendicular to the plane
of r and 64. Hence it is clear that

or = 8 xr. ©.1)
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When the system is rotated, not only the radius vectors but also the velocities
of the particles change direction, and all vectors are transformed in the same
manner. The velocity increment relative to a fixed system of co-ordinates is

Sv = 8 xv. 9.2)

F1c. 5

If these expressions are substituted in the condition that the Lagrangian is
unchanged by the rotation:

SL Z(M A o ) 0
= « OF, s OV, =
= 31‘“ ¥ 3Va “

and the derivative 2L/év, replaced by p,, and éL/ér, by p,, the result is

Z(f)a' o x1, +Pa- 8¢ Xvg) =0
a

or, permuting the factors and taking 84 outside the sum,

d
8¢Z(raxpa+va XPa) = 3b- Zra Xpe = 0.
a a

dt

Since 8¢ is arbitrary, it follows that (d/dt) Zr, xps = 0, and we conclude
that the vector

M = > roXpa, 9-3)
a

called the angular momentum or moment of momentum of the system, is con-
served in the motion of a closed system. Like the linear momentum, it is
additive, whether or not the particles in the system interact.

There are no other additive integrals of the motion. Thus every closed
system has seven such integrals: energy, three components of momentum,
and three components of angular momentum.

Since the definition of angular momentum involves the radius vectors of
the particles, its value depends in general on the choice of origin. The radius
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vectors ry and 1, of a given point relative to origins at a distance a apart are
related by r, = r,’+a. Hence

M= D>raxpa
a
= Zra' Xpa+ax zpa
a a

= M +axP. (9.4)

It is seen from this formula that the angular momentum depends on the
choice of origin except when the system is at rest as a whole (i.e. P = 0).
This indeterminacy, of course, does not affect the law of conservation of
angular momentum, since momentum is also conserved in a closed system.

We may also derive a relation between the angular momenta in two inertial
frames of reference K and K’, of which the latter moves with velocity V
relative to the former. We shall suppose that the origins in the frames K and
K’ coincide at a given instant. Then the radius vectors of the particles are the
same in the two frames, while their velocities are related by vq = vg'+ V.
Hence we have

M = D meroxXvg = > ing¥a Xva' + D mgxa X V.
a a a

The first sum on the right-hand side is the angular momentum M’ in the
frame K'; using in the second sum the radius vector of the centre of mass
(8.3), we obtain

M = M +pRxV. (9.5)

This formula gives the law of transformation of angular momentum from one
frame to another, corresponding to formula (8.1) for momentum and (8.5)
for energy.

If the frame K is that in which the system considered is at rest as‘a whole,
then V is the velocity of its centre of mass, pV its total momentum P relative
to K, and

M = M +RxP. (9.6)

In other words, the angular momentum M of a mechanical system consists
of its “intrinsic angular momentum” in a frame in which it is at rest, and the
angular momentum R x P due to its motion as a whole.

Although the law of conservation of all three components of angular
momentum (relative to an arbitrary origin) is valid only for a closed system,
the law of conservation may hold in a more restricted form even for a system
in an external field. It is evident from the above derivation that the component
of angular momentum along an axis about which the field is symmetrical is
always conserved, for the mechanical properties of the system 2r¢ unaltered
by any rotation about that axis. Here the angular momenttin gk of

course, be defined relative to an origin lying on the axis.
ST RSS—
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The most important such case is that of a centrally symmetric field or central
field, i.e. one in which the potential energy depends only on the distance from
some particular point (the centre). It is evident that the component of angular
momentum along any axis passing through the centre is conserved in motion
in such a field. In other words, the angular momentum M is conserved pro-
vided that it is defined with respect to the centre of the field.

Another example is that of a homogeneous field in the z-direction; in such
a field, the component M, of the angtlar momentum is conserved, whichever
point is taken as the origin.

"The component of angular momentum along any axis (say the z-axis) can
be found by differentiation of the Lagrangian:

éL

M= e (9.7)
a

where the co-ordinate ¢ is the angle of rotation about the z-axis. This is

evident from the above proof of the law of conservation of angular momentum,

but can also be proved directly. In cylindrical co-ordinates 7, ¢, = we have

(substituting xg = 74 €OS ¢g, Yo = 7 SIN da)

ik = Zma(xaya —YaXa)
o
= > mara’da. (9.8)
a

The Lagrangian is, in terms of these co-ordinates,

L =1 D> myia?+rba?+2.2)— U,
a
and substitution of this in (9.7) gives (9.8).

PROBLEMS

ProBLEM 1. Obtain expressions for the Cartesian components and the magnitude of the
angular momentum of a particle in cylindrical co-ordinates 7, ¢, 2.

SoLuTioN. My = m(ri—=z#) sin ¢—mrzd cos ¢,
My = —m(r2—27) cos ¢—mrzd sin ¢,
M, = mr2§,
M2 = m2r2§2(r2+-22) +m2(rs —27)%

ProBLEM 2. The same as Problem 1, but in spherical co-ordinates 7, 8, ¢.

SoLutioN. M = —mr(6 sin ¢ +¢ sin 8 cos 6 cos ¢),
My = mr®(6 cos ¢—d sin 8 cos 8 sin ¢),
M, = mr3d sin?6,

M2 = m2r(62+ §2 sin?f).

ProsrLEM 3. Which components of momentum P and angular momentum M are conserved
in motion in the following fields?

(a) the ﬁeld_of an infinite homogene_ous plane, (b) that of an infinite homogeneous cylinder,
(c) that of an infinite homogeneous prism, (d) that of two peints, (e) that of an infinite homo-
geneous half-plane, (f) that of a homogeneous cone, (g) that of a homogeneous circular torus,
(h) that of an infinite homogeneous cylindrical helix. -
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SoLuTION. (a) Pz, Py, M, (if the plane is the xy-plane), (b) M;, P, (if the axis of the
cylinder is the z-axis), (c) P, (if the edges of the prism are parallel to the z-axis),
(d) M. (if the line joining the points is the z-axis), (e) Py (if the edge of the half-
plane is the y-axis), (f) M; (if the axis of the cone is the z-axis), (g) M (if the axis
of the torus is the 2z-axis), (h) the Lagrangian is unchanged by a rotatjon through an angle
84 about the axis of the helix (let this be the z-axis) together with a translation through a
distance £8¢/27 along the axis (k being the pitch of the helix). Hence 8L = 8z oL/éz+
484 OL/op = SH(hP:[2n+-M ;) = 0, so that Mz4+-hP.[27 = constant.

§10. Mechanical similarity

Multiplication of the Lagrangian by any constant clearty does not affect
the equations of motion. This fact (already mentioned in §2) makes possible,

‘in a number of important cases, some useful inferences concerning the pro-

perties of the motion, without the necessity of actually integrating the equa-
tions.

Such cases include those where the potential energy is a homogeneous
function of the co-ordinates, i.e. satisfies the condition

Ulary, ary, ..., ary,) = akU(ry, 1y, ..., Ip), (10.1)

where « is any constant and k the degree of homogeneity of the function.

Let us carry out a transformation in which the co-ordinates are changed by
a factor « and the time by a factor B: r, —> arg, ¢t —> Bt. Thenall the velocities
Vq = drg/dt are changed by a factor «/B, and the kinetic energy by a factor
«2/B2. The potential energy is multiplied by ok. If « and B are such that
@?[B? = o, i.e. B = ol~#, then the result of the transformation is to multiply
the Lagrangian by the constant factor «*, i.e. to leave the equations of motion
unaltered.

A change of all the co-ordinates of the particles by the same factor corre-
sponds to the replacement of the paths of the particles by other paths, geometri-
cally similar but differing in size. Thus we conclude that, if the potential energy
of the system is a homogeneous function of degree % in the (Cartesian) co-
ordinates, the equations of motion permit a series of geometrically similar
paths, and the times of the motion between corresponding points are in the
ratio

vt = (F[hL-ik, (10.2)

where I[lis the ratio of linear dimensions of the two paths. Not only the times
but also any mechanical quantities at corresponding points at corresponding
times are in a ratio which is a power of /L. For example, the velocities,
energies and angular momenta are such that

vjo=(}%,  E[E= )k MM = Itk (103)

The following are some examples of the foregoing.

As we shall sce later, in small oscillations the potential energy is a quadratic
function of the co-ordinates (k = 2). From (10.2) we find that the period of
such oscillations is independent of their amplitude.
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In a uniform field of force, the potential energy is a lincar function of the
co-ordinates (see (5.8)), ie. k= 1. From (10.2) we have ¢/t = 1/(I']]).
Hence, for example, it follows that, in fall under gravity, the time of fall is as
the square root of the initial altitude.

In the Newtonian attraction of two masses or the Coulomb interaction of
two charges, the potential energy is inversely proportional to the distance
apart, ie. it is a homogeneous function of degree k = —1. Then #/t
=(I'/1)32, and we can state, for instance, that the square of the time of revolu-
tion in the orbit is as the cube of the size of the orbit (Kepler's third law).

If the potential energy is a homogeneous function of the co-ordinates and
the motion takes place in a finite region of space, there is a very simple relation
between the time average values of the kinetic and potential energies, known
as the zirial theorem.

Since the kinetic energy T is a quadratic function of the velocitics, we have
by Euler’s theorem on homogeneous functions Xvg-07/év, = 27, or, put-
ting 87/0v, = pg, the momentum,

o d
27T = Zpa-va = a( ZP“' 1) — Zra. Pu- (10.4)
(4 a a

Let us average this equation with respect to time. The average value of any
function of time f () is defined as

f=lim- fﬂom

It is easy to see that, if f{¢) is the time derivative dF(¢)/d? of a bounded func-
tion F(t), its mean value is zero. For

. . 1rdF F(7)— F(0
f=lim-| —dt = lim ) (—)
=02 ) dt 70 T

0

= (0

Let us assume that the system executes a motion in a finite region of space
and with finite velocities. Then Ypy - r, is bounded, and the mean value of
the first term on the right-hand side of (10.4) is zero. In the second term we
replace p, by —0U/0r, in accordance with Newton’s equations (5.3), obtain-
ingf

2T = Srq- 2Ujox,. (10.5)

If the potential energy is a homogeneous function of degree & in the radius
vectors rg, then by Euler’s theorem equation (10.5) becomes the required
relation:

e 0. (10.6)

1t The expression on the right of (10.5) is sometimes called the virial of the system.
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Since T+ U = E = E, the relation (10.6) can also be expressed as

U= 2008173, T = kE/(k+2), (10.7)
which express U and T in terms of the total energy of the.system.

" In particular, for small oscillations (k = 2) we have T = U, i.e. the mean
values of the kinetic and potential energies are equal. For a Newtonian inter-
action (k = —1)2T = —U, and E = —T, in accordance with the fact that,
in such an interaction, the motion takes place in a finite region of space only
if the total energy is negative (see §15).

PROBLEMS

ProBLEM 1. Find the ratio of the times in the same path for particles having different
masses but the same potential energy.

SOLUTION. [t = +/(m'[m).

ProBLEM 2. Find the ratio of the times in the same path for particles having the same mass
but potential energies differing by a constant factor.

SoLutIoN. £/t = 4/(UJU").



CHAPTER II1
INTEGRATION OF THE EQUATIONS OF MOTION

§11. Motion in one dimension

THE motion of a system having one degree of freedom is said to take place
in one dimension. 'The most general form of the Lagrangian of such a system
in fixed external conditions is

L = ja(g)¢*— U(g), (11.1)

where a(g) is some function of the generalised co-ordinate g. In particular,
if ¢ is a Cartesian co-ordinate (x, say) then

L = lmi2— U(x). (11.2)

The equations of motion corresponding to these Lagrangians can be inte-
grated in a general form. It is not even necessary to write down the equation
of motion; we can start from the first integral of this equation, which gives
the law of conservation of energy. For the Lagrangian (11.2) (e.g.) we have
dmi2+ U(x) = E. This is a first-order differential equation, and can be inte-
grated immediately. Since dx/dt = 4/{2[E— U(x)]/m}, it follows that

L= +/(3m )f—/[m+constant. (11.3)

The two arbitrary constants in the solution of the equations of motion are
here represented by the total energy E and the constant of integration.

Since the kinetic energy is essentially positive, the total energy always
exceeds the potential energy, i.e. the motion can take place only in those
regions of space where U(x) < E. For example, let the function U(x) be
of the form shown in Fig. 6 (p. 26). If we draw in the figure a horizontal
line corresponding to a given value of the total energy, we immediately find
the possible regions of motion. In the example of Fig. 6, the motion can
occur only in the range AB or in the range to the right of C.

The points at which the potential energy equals the total energy,

Ux) = E, (11.4)

give the limits of the motion. They are turning points, since the velocity there
is zero. If the region of the motion is bounded by two such points, then the
motion takes place in 2 finite region of space, and is said to be finite. If the
region of the motion is limited on only one side, or on neither, then the
motion is #nfinite and the particle goes to infinity.

25
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A finite motion in one dimension is oscillatory, the particle moving re-
peatedly back and forth between two points (in Fig. 6, in the potential well
AB between the points x; and x2). The period T of the oscillations, i.e. the
time during which the particle passes from x; to x2 and back, is twice the time
from &, to &, (because of the reversibility property, §5) or, by (11.3),

Zo( E)

7(E) = viem) |

x1(E)

dx
_ (11.5)
VIE-Ux)]
where x; and x3 are roots of equation (11.4) for the given value of E. This for--
mula gives the period of the motion as a function of the total energy of the
particle.
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PROBLEMS

ProsrLem 1. Determine the period of oscillations of a simple pendulum (a particle of mass
m suspended by a string of length / in a gravitational field) as a function of the amplitude of
the oscillations.

SorutioN. The energy of the pendulum is E = 4ml2§2—mgl cos ¢= --mgl cos ¢o, where
¢ is the angle between the string and the vertical, and ¢o the maximum value of ¢. Calculating
the period as t'l:fﬁ‘time required to go from ¢ = 0 to ¢ = ¢, multiplied by four, we find

%
P as
L & 4’\/2g 6[ 4/(cos ¢ —cos ¢o)

%
! dé
oM !
A/g -0[ V(sin24do—sinjd)
The substitution sin § = sin }¢/sin 3o converts this to T = 44/ (//g)K(sin 3¢0), where
in

dé
S ! 4/(1 —k2 sin%)

is the complete elliptic integral of the first kind. For sin ¢o ~ 3o << 1 (small oscillations),
an expansion of the function K gives

T = 27/ (g)(1 + fsdo?+ ...).
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The first term corresponds to the familiar formula.

ProBLEM 2. Determine the period of oscillation, as a function of the energy, when a
particle of mass m moves in fields for which the potential energy is

(a) U = Ax|7, (b) U = —Ubo/coshzax, —~Uo < E <0, (c) U = Up tanZax.

SoLUTION. (a):

(B4R
dx

V(E—Ax")

1
- 2'\/ 2_:“ ) (%)” of \/(1(1-)-,;6'

By the substitution y* = u the integral is reduced to a beta function, which can be expressed
in terms of gamma functions:

T = 2V (2m)

. 3)\/ 2am . (E_)l/" T(1/n) 4
”n E A _F(§‘+1/n)
The dependence of T on E is in accordance with the law of mechanical similarity (10.2),
(10.3).
(b) T = (/a)y/(2m/|E]).
(© T = (v} [2m/(E+Uo)].

§12. Determination of the potential energy from the period of
oscillation

Let us consider to what extent the form of the potential energy U(x) of a
field in which a particle is oscillating can be deduced from a knowledge of the
period of oscillation 7 as a function of the energy E. Mathematically, this
involves the solution of the integral equation (11.5), in which U(x) is regarded
as unknown and 7(E) as known.

We shall assume that the required function U(x) has only one minimum
in the region of space considered, leaving aside the question whether there
exist solutions of the integral equation which do not meet this condition.
For convenience, we take the origin at the position of minimum potential
energy, and take this minimum energy to be zero (Fig. 7).

U

Frc. 7
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In the integral (11.5) we regard the co-ordinate x as a function of U. The
function x(U) is two-valued: each value of the potential energy corresponds
to two different values of x. Accordingly, the integral (11.5) must be divided
into two parts before replacing dx by (dx/dU) dU: one fromx = aytox = 0
and the other from x = 0 to x = x2. We shall write the function x(U) in
these two ranges as x = x3(U) and x = xo(U) respectively.

The limits of integration with respect to U are evidently E and 0, so that
we have

0
x(U) o) [ (v)

T(E) = v/(2m )f VIE=D) dU +/(E-U)

E
=V (Zm)of [%‘ %] «/(EU Uy

If both sides of this equation are divided by 4/(«— E), where « is a parameter,
and integrated with respect to E from 0 to «, the result is

(] a E
T(E)AE dw, dv]  dUdE
T V6B ‘/(zm)f f [EJ dU]\/[(a—E)(E— )]

or, changing the order of integration,

\T/((i)_dg - \/(Zm)f [ccli;; dif] f V(- E)(E )’

The integral over E is elementary; its value is . The integral over U is
thus trivial, and we have

* T(E)dE
V(x—E)

since x5(0) = x1(0) = 0. Writing U in place of «, we obtain the final result:

= W\/(Zm)[xz(oc) = xl(“)]!

T(E) dE

x/(2m) f V(U- e

x(U)—x(U) =

he difference
n indeter-
U(zx)

Thus the known function 7(E) can be used to determine t
x2(U)—x1(U). The functions xx(U) and x(U) themselves rcmalb
minate. This means that there is not one but an infinity of curves

P T —
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which give the prescribed dependence of period on energy, and differ in such
a way that the difference between the two values of x corresponding to each
value of U is the same for every curve.

The indeterminacy of the solution is removed if we impose the condition
that the curve U = U(x) must be symmetrical about the U-axis, i.e. that
x(U) = —x3(U) = x(U). In this case, formula (12.1) gives for x(U) the

unique expression

U
T(E)dE

@ |
2m4/(2m) ; AV/(U—E)

x(U) = (12.2)

§13. The reduced mass

A complete general solution can be obtained for an extremely important
problem, that of the motion of a system consisting of two interacting particles
(the two-body problem).

As a first step towards the solution of this problem, we shall show how it
can be considerably simplified by separating the motion of the system into
the motion of the centre of mass and that of the particles relative to the centre
of mass.

The potential energy of the interaction of two particles depends only on
the distance between them, i.e. on the magnitude of the difference in their
radius vectors. The Lagrangian of such a system is therefore

= {,—mlx"12+—12»mgx"22— U(]rl—rgl). (131)

Let r = r;—r; be the relative position vector, and let the origin be at the
centre of mass, i.e. mry +more = 0. These two equations give

1) = mot/(my +mo), r2 = —mmt, (my+mz). (13.2)
Substitution in (13.1) gives
L = }mi2— U(r), (13.3)
where

m = nume/(my+mg) (13.4)

is called the reduced mass. The function (13.3) is formally identical with the
Lagrangian of a particle of mass 7 moving in an external field U(r) which is
symmetrical about a fixed origin.

Thus the problem of the motion of two interacting particles is equivalent
to that of the motion of one particle in a given external field U(r). From the
solution r = £(#) of this problem, the paths r; = r1(z) and rp = ro(t) of the
two particles separately, relative to their common centre of mass, are obtained
by means of formulae (13.2).
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PROBLEM

A system consists of one particle of mass M and n particles with equal masses . Eliminate
the motion of the centre of mass and so reduce the problem to one involving n particles.

SoruTioN. Let R be the radius vector of the particle of mass M, and R, =B2N-., n)
those of the particles of mass m. We put rs = R;—R and take the origin to be at the centre
of mass: MR+mIR, = 0. Hence R = ~(n/p) Xxe, where p=M + nm; R, = R + r..
Substitution in the Lagrangian L = 13/R2+3mZIR 2 UV gives

2
76, == —.}mZvu'-’ — Hm?/p) (Zva) — U, wherte v, = r,.

a a

The potential energy depends only on the distances between the particles, and so can be
written as a function of -the rg.

§14. Motion in a central field

On reducing the two-body problem to one of the motion of a single body,
we arrive at the problem of determining the motion of a single particle in an
external field such that its potential energy depends only on the distance 7
from some fixed point. This is called a central field. The force acting on the
particle is F = —dU(r)/ér = —(dU,/dr)r/r; its magnitude is likewise a func-
tion of  only, and its direction is everywhere that of the radius vector.

As has already been shown in §9, the angular momentum of any system
relative to the centre of such a field is conserved. The angular momentum of a
single particle is M = r xp. Since M is perpendicular to r, the constancy of
M shows that, throughout the motion, the radius vector of the particle lies
in the plane perpendicular to M.

Thus the path of a particle in a central ficld lies in one plane. Using polar
co-ordinates 7, ¢ in that plane, we can Wwrite the Lagrangian as

L = Jm(r2+7%2) — Ur); (14.1)

see (4.5). This function does not involve the co-ordinate ¢ explicitly. Any
generalised co-ordinate ¢; which does not appear explicitly in the Lagrangian
is said to be cyclic. For such a co-ordinate we have, by Lagrange’s equation,
(d/dr) ¢L/¢g; = 0L/dq; = 0, so that the corresponding generalised momen-
tum p; = dL/cg; is an integral of the motion. This leads to a considerable
simplification of the problem of integrating the equations of motion when
there are cyclic co-ordinates.

In the present case, the generalised momentum p,, = mr%$ is the same as
the angular momentum A7, = 17 (see (9.6)), and we return to the known law
of conservation of angular momentum:

M = mr% = constant. (14.2)

This law has a simple geometrical interpretation in the plane motio;l (;f asingle
particle in a central field. The expression 47 - rd¢ is the area © ft t}Clesector
bounded by two neighbouring radius vectors and an element © path

m— .
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(Fig. 8). Calling this area df, we can write the angular momentum of the par-
ticle as

M = 2mf, (14.3)

where the derivative £ is called the sectorial velocity. Hence the conservation
of angular momentum implies the constancy of the sectorial velocity: in equal
times the radius vector of the particle sweeps out equal areas (Kepler’s second

law).t

Fic. 8

The complete solution of the problem of the motion of a particle in a central
field is most simply obtained by starting from the laws of conservation of
energy and angular momentum, without writing out the equations of motion
themselves. Expressing ¢ in terms of } from (14.2) and substituting in the
expression for the energy, we obtain

E = (P + 242+ U(r) = 3mi®+ M2 'mr2+ U(r). (14.4)
Hence
7 = g = A/li[E— U(r)] ——ﬂf} (14.5)
ds m ni%r? 2

or, integrating,

7= f dr/A/{mE[E— U@)] - S }+constant. (14.6)

111212

Writing (14.2) as d¢ = M dt/mr2, substituting df from (14.5) and integrating,
we find

4 j‘ Mdr[r?
= | VmE- U] -1
Formulae (14.6) and (14.7) give the general solution of the problem. The
latter formula gives the relation between r and ¢, i.e. the equation of the path.
Formula (14.6) gives the distance » from the centre as an implicit function of

time. The angle &, it should be noted, always varies monotonically with time,
since (14.2) shows that ¢ can never change sign.

+ constant. (14.7)

t The law of conservation of angular momentum for a particle moving in a central field
is sometimes called the area integral.
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The expression (14.4) shows that the radial part of the motion can be re-

garded as taking place in one dimension in a field where the “‘effective poten-
tial energy” is

Uett = U(r)+ M2/ 2mr2. (14.8)
"The quantity M2/2my? is called the centrifugal energy. The values of  for which
U(r)+ M2?2m® = E (14.9)

determine the limits of the motion as regards distance from the centre.
When equation (14.9) is satisfied, the radial velocity # is zero. This does not
mean that the particle comes to rest as in true one-dimensional motion, since
the angular velocity ¢ is not zero. The value # = 0 indicates a turning point
of the path, where 7(£) begins to decrease instead of increasing, or vice versa.
If the range in which 7 may vary is limited only by the condition 7 > 7mpin,
the motion is infinite: the particle comes from, and returns to, infinity.
~ If the range of 7 has two limits 75, 2and 7y, the motion is finite and the
path lies entirely within the annulus bounded by the circles 7 = ryax and
7 = rmin. This does not mean, however, that the path must be a closed curve.
During the time in which » varies from rpay to #min and back, the radius
vector turns through an angle A¢ which, according to (14.7), is given by

2 e Mdr[r?
f V[2m(E— U)— M2/r2]

A (14.10)

Tmin

The condition for the path to be closed is that this angle should be a rational
fraction of 2r, i.e. that A¢ = 2mm/n, where m and # are integers. In that case,
after.n periods, the radius vector of the particle will have made m complete
revolutions and will occupy its original position, so that the path is closed.

Such cases are exceptional, however, and when the form of U(r) is arbitrary
the angle A¢ is not a rational fraction of 2a. In general, therefore, the path
of a particle executing a finite motion is not closed. It passes through the
minimum and maximum distances an infinity of times, and after infinite time
it covers the entire annulus between the two bounding circles. The path
shown in Fig. 9 is an example.

There are only two types of central field in which all finite motions take
place in closed paths. They are those in which the potential energy of the
particle varies as 1/r or as #2. The former case is discussed in §15; the latter
is that of the space oscillator (see §23, Problem 3).

At a turning point the square root in (14.5), and therefore the integrands
in (14.6) and (14.7), change sign. If the angle ¢ is measured from the direc-
tion of the radius vector to the turning point, the parts of the path on each
side of that point differ only in the sign of ¢ for each value of 7, 1.€. the path
is symmetrical about the line ¢ = 0. Starting, say, from a pornt Wh_:;e rj max
the particle traverses a segment of the path as far as a polnt WItQ 7" = 7p,,,
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then follows a symmetrically placed segment to the next point where 7 = gy,
and so on. Thus the entire path is obtained by repeating identical segments
forwards and backwards. This applies also to infinite paths, which consist of
two symmetrical branches extending from the turning point (r = 7y to
infinity.

Fic. 9

The presence of the centrifugal energy when M # 0, which becomes
infinite as 1/72 when r - 0, generally renders it impossible for the particle to
reach the centre of the field, even if the field is an attractive one. A “fall” of
the particle to the centre is possible only if the potential energy tends suffi-
ciently rapidly to —oo as 0. From the inequality

3m? = E— U(r)— M22mr2 > 0,
or r2U(r)+ M?/2m < Er2, it follows that r can take values tending to zero
only if
[2U(r)}rs0 < — M2/ 2m, (14.11)

i.e. U(¥) must tend to — oo either as — a/r®with o > 112/2m, or proportionally
to —1/rn with # > 2.

PROBLEMS

ProsrLEM 1. Integrate the equations of motion for a spherical pendulum (a particle of mass
m moving on the surface of a sphere of radjus 7 in a gravitational field).

SOLUTION. .In spherical co-ordinates, with the origin at the centre of the sphere and the
polar axis vertically downwards, the Lagrangian of the pendulum is

3mI2(62+ 42 5in26) 4- mgl cos 6.
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The co-ordinate ¢ is cyclic, and hence the generalised momentum pg» which is the same as the
z-component of angular momentum, is conserved:

ml?$ sin%0 = M. = constant. wm
The energy is
E = Yml(6>+¢? sin%0) —mgl cos 0

= Y28 432122 'mi? sin20 —mgl cos 6. @
Hence
- J‘ do ’ 3)
V{2[E— Uest(9)] 'mi?}
where the “effective potential energy’’ is
Uess(0) = 102 'ml® sin6—mgl cos 6.
For the angle ¢ we find, using (1),
S M. dé )

IV(@2m) Jsin20y' [E—Uear(0)]

The integrals (3) and (4) lead to elliptic integrals of the first and third kinds respectively.

The range of # in which the motion takes place is that where E > Uerr, and its limits
are given by the equation E = Uesr. This is a cubic equation for cos §, having two roots
between —1 and +1; these define two circles of latitude on the sphere, between which the
path lies.

ProBLEM 2. Integrate the equations of motion for a particle moving on the surface of a
cone (of vertical angle 2x) placed vertically and with vertex downwards in a gravitational
field.

SorLutioN. In spherical co-ordinates, with the origin at the vertex of the cone and the
polar axis vertically upwards, the Lagrangian is 4m(#2+72$2 sin®x) —mgr cos «. The co-
ordinate ¢ is cyclic, and A = mr2§ sin®« is again conserved. The energy is

E = 24 1 M2/mr® sin®x+mgr cos o.
By the same method as in Problem 1, we find

N “ dr
b OARIE—=Ues(r)] m)’
M, [ dr
P2\ [E—=Uent(n)]’

A/(2m) sin?x |

A2
—— —— 4mgr cos
2mr? sin2o e

Uere(r) =

The condition E = Ulse(r) is (if M ¢ 0) a cubic equation for r, having two positive roots;
these define two horizontal circles on the cone, between which the path lies.

ProBLEM 3. Integrate the equations of motion for a pendulum of mass me, with a mass »:1
at the point of support which can move on a horizontal line lying in the plane in which m»
moves (Fig. 2, §3).

Sorvtiox. In the Lagrangian derived in §5, Problem 2, the co-ordinate x is cyclic. The
generalised momentum P, which is the horizontal component of the total momentum of the
system, is therefore conserved:

' — (m1+mz2)x%+mald cos ¢ = constant. (6]
The system may always be taken to be at rest as a whole. Then the constant in (1) is zero
and integration gives

(mi+mg)x +mel sin ¢ —= constant, : (2)
m does not move horngntauy.
——— e

which expresses the fact that the centre of mass of the syste
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Using (1), we find the energy in the form

m2

E= émglfxﬁ?(l - cos'~’¢) —mzgl cos ¢. A3)

my+ma

Hence

" l,\/ me “A/ml+m2 sin2¢ 44,
2(matmg) / E+mogl cos ¢

Expressing the co-ordinates x2 = x4 sin ¢, ¥ = I cos ¢ of the particle ms in terms of ¢
by means of (2), we find that its path is an arc of an ellipse with horizontal semi-
axis Im1/(m1 +mz) and vertical semi-axis I. As my —> @ we return to the familiar simple pen-
dulum, which moves in an arc of a circle.

§15. Kepler’s problem

An important class of central ficlds is formed by those in which the poten-
tial energy is inversely proportional to 7, and the force accordingly inversely
proportional to #2. They include the fields of Newtonian gravitational attrac-
tion and of Coulomb electrostatic interaction; the latter may be either attrac-
tive or repulsive.

Let us first consider an attractive field, where

U= —ofr (15.1)
with o a positive constant. The “effective” potential energy
o A2 1
Uep = ——+— (15.2)
o 2mr®

is of the form shown in Fig. 10. As ¥ -0, Uggy tends to + o0, and as 7 — o0
1t tends to zero from negative values; for » = M2/my. it has a minimum value

Ueﬂ. min = — mx2 22, (15.3)

Uett”

r

N
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It is seen at once from Fig. 10 that the motion is finite for £ < 0 and infinite
for E > 0.
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"The shape of the path is obtained from the general formula (14.7). Substi-
tuting there U = — o 7 and effecting the elementary integration, we have
, (MIr)—(mz/ i)

— couwl - & -+ constant.

272,
A/ (ZmE AL )
ii2

Taking the origin of ¢ such that the constant is zero, and putting

p = M3ma, e = +/[1 +(2E31% ma?)), (15.4)
we can write the equation of the path as
pir = 1+ecos . (15.5)

This is the equation of a conic section with one focus at the origin; 2p is called
the Latus rectum of the orbit and e the eccentricity. Our choice of the origin of ¢
is seen from (15.5) to be such that the point where ¢ = O is the point ncarcst
to the origin (called the perihelion).

In the equivalent problem of two particles interacting according to the law
(15.1), the orbit of each particle is a conic section, with one focus at the centre
of mass of the two particles.

It is seen from (15.4) that, if £ < 0, then the eccentricity e < 1, 1.e. the
orbit is an ellipse (Fig. 11) and the motion is finite, in accordance with what
has been said earlier in this section. According to the formulae of analytical
geometry, the major and minor semi-axes of the cllipse arc

a=p(l-e)=a2|E, b=p/(1-€)= M/ (2mE]). (15.6)

2b |
f=oci—s ’

20- >

e— Ty —»!
~
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The least possible value of the energy is (15.3), and then e = 0, i.e. the ellipse
becomes a circle. It may be noted that the major axis of the ellipse depends
only on the energy of the particle, and not on its angular momentum. The
Jeast and greatest distances from the centre of the field (the focus of the
ellipse) are

rmin = p/(1+€) = a(l—e), rmax = pi(1—e) = a(l+€)-  (15.7)
and (15.4), can, of course,

These expressions, with a and e given by (15.6)
also be obtained directly as the roots of the equation Uest(7.
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The period T of revolution in an elliptical orbit is conveniently found by
using the law of conservation of angular momentum in the form of the area
integral (14.3). Integrating this equation with respect to time from zero to
T, we have 2mf = TM, where f is the arca of the orbit. For an ellipse
f = mab, and by using the formulae (15.6) we find

T = 2mad24/(m]a)
= mar/ (/2| E}3). (15.8)
The proportionality between the square of the period and the cube of the
linear dimension of the orbit has already been demonstrated in §10. It may
also be noted that the period depends only on the energy of the particle.

For E > 0 the motion is infinite. If E > 0, the eccentricity ¢ > 1, i.e. the
the path is a hyperbola with the origin as internal focus (Fig. 12). The dis-
tance of the perihelion from the focus is

fmin = p/(e+1) = a(e—1), (15.9)
where a = p/(e2—1) = 2/2E is the “‘semi-axis” of the hyperbola.

Y
I
/ x
<—ale-n - 4|
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If E = 0, the eccentricity e = 1, and the particle moves in a parabola with
perihelion distance 7,1, = 4p. This case occurs if the particle starts from rest
at infinity.

The co-ordinates of the particle as functions of time in the orbit may be
found by means of the general formula (14.6). They may be represented in a
convenient parametric form as follows. N

Let us first consider elliptical orbits. With a and ¢ given by (15.6) and (15.4)
We can write the integral (14.6) for the time as

rdr
t —

N 2] f\/[—72+(a/lEl)f—(M2/2mlEi)]

o e

m
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The obvious substitution #—a = —ae cos ¢ converts the integral to
ma3 nad ]
= A/— (1—-ecosg)dé = A/*-’(sc—e sin £) 4 constant.
o4 (o4

If time is measured in such a way that the constant is zero, we have the
following parametric dependence of # on ¢:

r = a(l—ecosé), t = 4 /(ma3/2)(£—esing), (15.10)
the particle being at perihelion at ¢ = 0. The Cartesian co-ordinates
x =rcos¢, y = rsin¢ (the x and y axes being respectively parallel to the
major and minor axes of the ellipse) can likewise be expressed in terms of
the parameter §. From (15.5) and (15.10) we have

ex = p—7r = a(l—e)—a(l—ecosf) = ae(cosé—e);

y 1s equal to 4/(#2—x2). Thus
x = a(cosé—e), ¥y = ay(1—¢)siné. (15.11)

A complete passage round the ellipse corresponds to an increase of ¢ from 0
to 2m.

Entirely similar calculations for the hyperbolic orbits give
r = afe cosh¢&—1), t = /(ma3/e)(e sinh & —¢),

i . (15.12)
x = a(e—cosh§), y = ay/(e2—1) sinh¢,
where the parameter ¢ varies from — oo to + co.
Let us now consider motion in a repulsive field, where

U= afr (e > 0). (15.13)

Here the effective potential energy is
o o M2
=—+
T 2

and decreases meonotonically from + oo to zero as r varies from zero to
infinity. The energy of the particle must be positive, and the motion is always
infinite. The calculations are exactly similar to those for the attractive field.
The path is a hyperbola:

plr = —1+ecosg, (15.14)

where p and e are again given by (15.4). The path passes the centre of the
field in the manner shown in Fig. 13. The perihelion distance is
rmin = pl(e—1) = a(e+1). (15.15)
The time dependence is given by the parametric equations
r = alecoshé+1), ¢t = A/(madfa)(esinhé+E) (15.16)
x = a(cosh¢ +e), y = av/(¢2—1) sinh&:

mm—— T Ten——
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To conclude this section, we shall show that there is an integral of the mo-
tion which exists only in fields U = «/r (with either sign of «). It is easy to
verify by direct calculation that the quantity

vxM+oarjr (15.17)

is constant. For its total time derivative is v xM+ av/r— ar(v - 1)/73 or,
since M = mr xv,

mr(ve V) —mv(r- v)+ ov/r —ox(v- r)/r3.

Putting m¥ = ar/s3 from the equation of motion, we find that this expression
vanishes.

[e—a (I+e)—>
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The direction of the conserved vector (15.17) is along the major axis from
the focus to the perihelion, and its magnitude is ce. This is most simply
seen by considering its value at perihelion.

It should be emphasised that the integral (15.17) of the motion, like M and
E, is a one-valued function of the state (position and velocity) of the particle.
We shall see in §50 that the existence of such a further one-valued integral
is due to the degeneracy of the motion.

PROBLEMS

PR_OBLEM 1. Find the time dependence of the co-ordinates of a particle with energy £ = 0
moving in a parabola in a field U = —a/r.

SorLutioN. In the integral
oo J' rdr
VI(2e/m)yr — (M2 /m?)]

we substitute 7 = M1 +%2)/2ma = 3p(1 S
the required dependence:

%), obtaining the following parametric form of

T=804), = Vmp?a).dn(1 + ),
x = $p(1—23), Yy = p.






