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1 Renormalization of QED

1.1 Example III: e− + µ− −→ e− + µ−

The most important one-loop correction to the probability amplitude of the process e− +

e+ −→ µ−+µ+ is given by the Feynamn diagram RAD2. This is known as the vertex correction

as it gives quantum correction to the QED interaction vertex −ieγµ. It has profound observable

measurable physical consequences. For example it will lead among other things to the infamous

anomalous magnetic moment of the electron. This is a generic effect. Indeed vertex correction

should appear in all electromagnetic processes.

Let us consider here as an example the different process

e−(p) + µ−(k) −→ e−(p
′

) + µ−(k
′

). (1)

This is related to the process e−+e+ −→ µ−+µ+ by the so-called crossing symmetry or substi-

tution law. Remark that the incoming positron became the outgoing electron and the outgoing

antimuon became the incoming muon. The substitution law is essentially the statement that the

probability amplitudes of these two processes can be obtained from the same Green’s function.

Instead of following this route we will simply use Feynman rules to write down the probability

amplitude of the above process of electron scattering from a heavy particle which is here the

muon.

For vertex correction we will need to add the probability amplitudes of the three Feynamn

diagrams VERTEX. The tree level contribution (first graph) is (with q = p− p
′

and l
′

= l− q)

(2π)4δ4(k + p− k
′ − p

′

)
ie2

q2
(ūs

′

(p
′

)γµus(p))(ūr
′

(k
′

)γµu
r(k)). (2)

The electron vertex correction (the second graph) is

(2π)4δ4(k + p− k
′ − p

′

)
−e4
q2

∫

d4l

(2π)4
1

(l − p)2 + iǫ

(

ūs
′

(p
′

)γλ
i(γ.l

′

+me)

l′2 −m2
e + iǫ

γµ
i(γ.l +me)

l2 −m2
e + iǫ

γλu
s(p)

)

× (ūr
′

(k
′

)γµu
r(k)). (3)

The muon vertex correction (the third graph) is similar to the electron vertex correction but

since it will be neglected in the limit mµ −→ ∞ we will not write down here.

Adding the three diagrams together we obtain

(2π)4δ4(k + p− k
′ − p

′

)
ie2

q2
(ūs

′

(p
′

)Γµ(p
′

, p)us(p))(ūr
′

(k
′

)γµu
r(k)). (4)

This is the same as the tree level term with an effective vertex −ieΓµ(p
′

, p) where Γµ(p
′

, p) is

given by

Γµ(p
′

, p) = γµ + ie2
∫

d4l

(2π)4
1

(l − p)2 + iǫ

(

γλ
i(γ.l

′

+me)

l′2 −m2
e + iǫ

γµ
i(γ.l +me)

l2 −m2
e + iǫ

γλ

)

. (5)
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If we did not take the limit mµ −→ ∞ the muon vertex would have also been corrected in the

same fashion.

The corrections to external legs are given by the four diagrams WAVEFUNCTION. We only

write explicitly the first of these diagrams. This is given by

(2π)4δ4(k + p− k
′ − p

′

)
e4

q2

∫

d4l

(2π)4
1

(l − p)2 + iǫ
(ūs

′

(p
′

)γµ
γ.p+me

p2 −m2
e

γλ
γ.l +me

l2 −m2
e

γλu
s(p))(ūr

′

(k
′

)γµu
r(k)).

(6)

The last diagram contributing to the one-loop radiative corrections is the vacuum polarization

diagram shown on figure PHOTONVACUUM. It is given by

(2π)4δ4(k + p− k
′ − p

′

)
ie2

(q2)2
(ūs

′

(p
′

)γµu
s(p))Πµν

2 (q)(ūr
′

(k
′

)γνu
r(k)). (7)

iΠµν
2 (q) = (−1)

∫

d4k

(2π)4
tr(−ieγµ) i(γ.k +me)

k2 −m2
e + iǫ

(−ieγν) i(γ.(k + q) +me)

(k + q)2 −m2
e + iǫ

. (8)

1.2 Example IV : Scattering From External Electromagnetic Fields

We will now consider the problem of scattering of electrons from a fixed external electro-

magnetic field Abackgr
µ , viz

e−(p) −→ e−(p
′

). (9)

The transfer momentum which is here q = p
′−p is taken by the background electromagnetic field

Abackgr
µ . Besides this background field there will also be a fluctuating quantum electromagnetic

field Aµ as usual. This means in particular that the interaction Lagrangian is of the form

Lin = −e ¯̂ψinγµψ̂in(Â
µ + Aµ,backgr). (10)

The initial and final states in this case are given by

|~p, s in >=
√

2E~p b̂in(~p, s)
+|0 in > . (11)

|~p′

, s
′

out >=
√

2E~p′ b̂out(~p
′

, s
′

)+|0 out > . (12)

The probability amplitude after reducing the initial and final electron states using the appro-

priate reduction formulas is given by

< ~p
′

s
′

out|~ps in > = −
[

ūs
′

(p
′

)(γ.p
′ −me)

]

α′

Gα′α(−p
′

, p)
[

(γ.p−me)u
s(p)

]

α
. (13)

HereGα′α(p
′

, p) is the Fourier transform of the 2−point Green’s function < 0 out|T (ψ̂α′ (x
′

)
¯̂
ψα(x))|0 in >,

viz
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< 0 out|T
(

ψ̂α′ (x
′

)
¯̂
ψα(x)

)

|0 in > =
∫

d4p
′

(2π)4

∫

d4p

(2π)4
Gα′ ,α(p

′

, p) eipx+ip
′

x
′

. (14)

By using the Gell-Mann Low formula we get

< 0 out|T
(

ψ̂α′ (x
′

)
¯̂
ψα(x)

)

|0 in > = < 0 in|T
(

ψ̂α′ ,in(x
′

)
¯̂
ψα,in(x)S

)

|0 in > . (15)

Now we use Wick’s theorem. The first term in S leads 0. The second term in S leads to the

contribution

i
∫

d4z < 0 in|T
(

ψ̂α′ ,in(x
′

)
¯̂
ψα,in(x)Lin(z)

)

|0 in > = (−ie)
∫

d4z < 0 in|T
(

ψ̂α′ ,in(x
′

)
¯̂
ψα,in(x).

¯̂
ψin(z)γµ

× ψ̂in(z)
)

|0 in > Aµ,backgr(z)

= (−ie)
∫

d4z
(

SF (x
′ − z)γµSF (z − x)

)α
′

α

Aµ,backgr(z)

= (−ie)
∫

d4p
′

(2π)4

∫

d4p

(2π)4

(

S(p
′

)γµS(p)
)α

′

α

Aµ,backgr(q)

× eipx−ip
′

x
′

. (16)

We read from this equation the Fourier transform

Gα′α(−p
′

, p) = (−ie)
(

S(p
′

)γµS(p)
)α

′

α

Aµ,backgr(q). (17)

The tree level probability amplitude is therefore given by

< ~p
′

s
′

out|~ps in > = −ie
(

ūs
′

(p
′

)γµu
s(p)

)

Aµ,backgr(q). (18)

The Fourier transform Aµ,backgr(q) is defined by

Aµ,backgr(x) =
∫

d4q

(2π)4
Aµ,backgr(q) e−iqx. (19)

This tree level process corresponds to the Feynman diagram EXT-TREE.

The background field is usually assumed to be small. So we will only keep linear terms in

Aµ,backgr(x). The third term in S does not lead to any correction which is linear in Aµ,backgr(x).

The fourth term in S leads to a linear term in Aµ,backgr(x) given by

(−ie)3
3!

(3)
∫

d4z1

∫

d4z2

∫

d4z3 < 0 in|T
(

ψ̂α′ ,in(x
′

)
¯̂
ψα,in(x).

¯̂
ψin(z1)γµψ̂in(z1).

¯̂
ψin(z2)γνψ̂in(z2).

¯̂
ψin(z3)

× γλψ̂in(z3)
)

|0 in >< 0 out|T (Âµ(z1)Â
ν(z2))|0 in > Aλ,backgr(z3). (20)
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We use Wick’s theorem. For the gauge fields the result is trivial. It is simply given by the

photon propagator. For the fermion fields the result is quite complicated. As before there are

in total 24 contractions. By dropping those disconnected contractions which contain SF (0)

we will only have 11 contractions left. By further inspection we see that only 8 are really

disconnected. By using then the symmetry between the internal points z1 and z2 we obtain the

four terms

< 0 in|T
(

ψ̂α′ ,in(x
′

)
¯̂
ψα,in(x).

¯̂
ψin(z1)γµψ̂in(z1).

¯̂
ψin(z2)γνψ̂in(z2).

¯̂
ψin(z3)γλψ̂in(z3)

)

|0 in >

= −2
[

SF (x
′ − z1)γµSF (z1 − x)

]α
′

α

trγνSF (z2 − z3)γλSF (z3 − z2)

+ 2
[

SF (x
′ − z1)γµSF (z1 − z2)γνSF (z2 − z3)γλSF (z3 − x)

]α
′

α

+ 2
[

SF (x
′ − z3)γλSF (z3 − z2)γνSF (z2 − z1)γµSF (z1 − x)

]α
′

α

+ 2
[

SF (x
′ − z1)γµSF (z1 − z3)γλSF (z3 − z2)γνSF (z2 − x)

]α
′

α

. (21)

These four terms correspond to the four Feynman diagrams on figure EXT-RAD. Clearly only

the last diagram will contribute to the vertex correction so we will only focus on it in the rest

of this discussion. The fourth term in S leads therefore to a linear term in the background field

Aµ,backgr(x) given by

(−ie)3
∫

d4z1

∫

d4z2

∫

d4z3

[

SF (x
′ − z1)γµSF (z1 − z3)γλSF (z3 − z2)γνSF (z2 − x)

]α
′

α

iDµν
F (z1 − z2)

× Aλ,backgr(z3) = e3
∫ d4p

′

(2π)4

∫ d4p

(2π)4

∫ d4k
′

(2π)4

∫ d4k

(2π)4
1

(p′ − k)2 + iǫ

(

S(p
′

)γµS(k)γλS(k
′

)γµS(p)
)α

′

α

× Aλ,backgr(q) (2π)4δ4(q − k + k
′

) eipx−ip
′

x
′

. (22)

The corresponding Fourier transform is

Gα
′
,α(−p

′

, p) = e3
∫

d4k

(2π)4
1

(p′ − k)2 + iǫ

(

S(p
′

)γµS(k)γλS(k − q)γµS(p)
)α

′

α

Aλ,backgr(q).

(23)

The probability amplitude (including also the tree level contribution) is therefore given by

< ~p
′

s
′

out|~ps in > = −ie
(

ūs
′

(p
′

)γλu
s(p)

)

Aλ,backgr(q)

+ e3
∫ d4k

(2π)4
1

(p− k)2 + iǫ

(

ūs
′

(p
′

)γµS(k + q)γλS(k)γ
µus(p)

)

Aλ,backgr(q)

= −ie
(

ūs
′

(p
′

)Γλ(p
′

, p)us(p)
)

Aλ,backgr(q). (24)

The effective vertex Γλ(p
′

, p) is given by the same formula as before. This is a general result.

The quantum electron vertex at one-loop is always given by the function Γλ(p
′

, p).
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1.3 One-loop Calculation I: Vertex Correction

1.3.1 Feynman Parameters and Wick Rotation

We will calculate δΓµ(p
′

, p) = Γµ(p
′

, p) − γµ. First we use the identities γνγµγν = −2γµ,

γλγργµγλ = 4ηρµ and

γλγργµγσγλ = 2γσγργµ − 2γµγργσ − 2γργµγσ

= −2γσγµγρ. (25)

We have

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = 2ie2
∫ d4l

(2π)4
1

((l − p)2 + iǫ)(l′2 −m2
e + iǫ)(l2 −m2

e + iǫ)
ūs

′

(p
′

)
(

(γ.l)γµ(γ.l
′

)

+ m2
eγ

µ − 2me(l + l
′

)µ
)

us(p). (26)

Feynman Parameters: Now we note the identity

1

A1A2...An

=
∫ 1

0
dx1dx2...dxnδ(x1 + x2 + ...+ xn − 1)

(n− 1)!

(x1A1 + x2A2 + ... + xnAn)n
. (27)

For n = 2 this is obvious since

1

A1A2
=

∫ 1

0
dx1dx2δ(x1 + x2 − 1)

1

(x1A1 + x2A2)2

=
∫ 1

0
dx1

1

(x1A1 + (1− x1)A2)2

=
1

(A1 − A2)2

∫ A1/(A1−A2)

A2/(A1−A2)

dx1
x21

. (28)

In general the identity can be proven as follows. Let ǫ be a small positive real number. We

start from the identity

1

A
=
∫

∞

0
dt e−t(A+ǫ). (29)

Hence

1

A1A2...An
=
∫

∞

0
dt1dt2...dtn e

−

∑n

i=1
ti(Ai+ǫ). (30)

Since ti ≥ 0 we have also the identity

∫

∞

0

dλ

λ
δ(1− 1

λ

n
∑

i=1

ti) = 1. (31)

Inserting (31) into (30) we obtain

1

A1A2...An

=
∫

∞

0
dt1dt2...dtn

∫

∞

0

dλ

λ
δ(1− 1

λ

n
∑

i=1

ti) e
−

∑n

i=1
ti(Ai+ǫ). (32)
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We change variables from ti to xi = ti/λ. We obtain

1

A1A2...An

=
∫

∞

0
dx1dx2...dxn

∫

∞

0
dλλn−1 δ(1−

n
∑

i=1

xi) e
−λ
∑n

i=1
xi(Ai+ǫ). (33)

We use now the integral representation of the gamma function given by (with Re(X) > 0)

Γ(n) = (n− 1)! = Xn
∫

∞

0
dλλn−1 e−λX . (34)

We obtain

1

A1A2...An
=
∫

∞

0
dx1dx2...dxn δ(1−

n
∑

i=1

xi)
(n− 1)!

(

∑n
i=1 xi(Ai + ǫ)

)n . (35)

Since xi ≥ 0 and
∑n

i=1 xi = 1 we must have 0 ≤ xi ≤ 1. Thus

1

A1A2...An

=
∫ 1

0
dx1dx2...dxn δ(1−

n
∑

i=1

xi)
(n− 1)!

(

A1x1 + A2x2 + ...+ Anxn

)n . (36)

The variables xi are called Feynman parameters.

This identity will allow us to convert a product of propagators into a single fraction. Let us

see how this works in our current case. We have

1

((l − p)2 + iǫ)(l′2 −m2
e + iǫ)(l2 −m2

e + iǫ)
= 2

∫ 1

0
dxdydz δ(x+ y + z − 1)

1

D3
. (37)

D = x((l − p)2 + iǫ) + y(l
′2 −m2

e + iǫ) + z(l2 −m2
e + iǫ). (38)

Let us recall that the variable of integration is the four-momentum l. Clearly we must try to

complete the square. By using x+ y + z = 1 we have

D = l2 − 2(xp+ yq)l + xp2 + yq2 − (y + z)m2
e + iǫ

=
(

l − xp− yq
)2

− x2p2 − y2q2 − 2xypq + xp2 + yq2 − (y + z)m2
e + iǫ

=
(

l − xp− yq
)2

+ xzp2 + xyp
′2 + yzq2 − (y + z)m2

e + iǫ. (39)

Since this will act on us(p) and ūs
′

(p
′

) and since p2us(p) = m2
eu

s(p) and p
′2ūs

′

(p
′

) = m2
eū

s
′

(p
′

)

we can replace both p2 and p
′2 in D with their on-shell value m2

e. We get then

D =
(

l − xp− yq
)2

+ yzq2 − (1− x)2m2
e + iǫ. (40)

We will define

∆ = −yzq2 + (1− x)2m2
e. (41)
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This is always positive since q2 < 0 for scattering processes. We shift the variable l as l −→
L = l − xp− yq. We get

D = L2 −∆+ iǫ. (42)

Plugging this result into our original integral we get

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = 4ie2
∫ 1

0
dxdydz δ(x+ y + z − 1)

∫

d4L

(2π)4
1

(L2 −∆+ iǫ)3
ūs

′

(p
′

)
(

(γ.l)γµ(γ.l
′

)

+ m2
eγ

µ − 2me(l + l
′

)µ
)

us(p). (43)

In this equation l = L+ xp+ yq and l
′

= L+ xp+ (y− 1)q. By dropping odd terms in L which

must vanish by summetry we get

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = 4ie2
∫ 1

0
dxdydz δ(x+ y + z − 1)

∫ d4L

(2π)4
1

(L2 −∆+ iǫ)3
ūs

′

(p
′

)
(

(γ.L)γµ(γ.L)

+ m2
eγ

µ + (xγ.p + yγ.q)γµ(xγ.p+ (y − 1)γ.q)− 2me(2xp + (2y − 1)q)µ
)

us(p).

(44)

Again by using symmetry considerations quadratic terms in L must be given by

∫

d4L

(2π)4
LµLν

(L2 −∆+ iǫ)3
=
∫

d4L

(2π)4

1
4
ηµνL2

(L2 −∆+ iǫ)3
(45)

Thus

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = 4ie2
∫ 1

0
dxdydz δ(x+ y + z − 1)

∫ d4L

(2π)4
1

(L2 −∆+ iǫ)3
ūs

′

(p
′

)
(

− 1

2
γµL2

+ m2
eγ

µ + (xγ.p + yγ.q)γµ(xγ.p+ (y − 1)γ.q)− 2me(2xp + (2y − 1)q)µ
)

us(p).

(46)

By using γ.pus(p) = meu
s(p), ūs

′

(p
′

)γ.p
′

= meū
s
′

(p
′

) and γ.pγµ = 2pµ − γµγ.p, γµγ.p
′

=

2p
′µ − γ.p

′

γµ we can make the replacement

ūs
′

(p
′

)
[

(xγ.p + yγ.q)γµ(xγ.p + (y − 1)γ.q)
]

us(p) −→ ūs
′

(p
′

)
[(

(x+ y)γ.p− yme

)

γµ
(

(x+ y − 1)me

− (y − 1)γ.p
′

)]

us(p)

−→ ūs
′

(p
′

)
[

me(x+ y)(x+ y − 1)(2pµ −meγ
µ)

− (x+ y)(y − 1)
(

2me(p+ p
′

)µ + q2γµ − 3m2
eγ

µ
)

− m2
ey(x+ y − 1)γµ +mey(y − 1)(2p

′µ −meγ
µ)
]

× us(p). (47)
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After some more algebra we obtain the result

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = 4ie2
∫ 1

0
dxdydz δ(x+ y + z − 1)

∫

d4L

(2π)4
1

(L2 −∆+ iǫ)3
ūs

′

(p
′

)
[

γµ
(

− 1

2
L2

+ (1− z)(1 − y)q2 + (1− x2 − 2x)m2
e

)

+mex(x− 1)(p+ p
′

)µ

+ me(x− 2)(x+ 2y − 1)meq
µ
]

us(p). (48)

The term proportional to qµ = pµ − p
′µ is zero because it is odd under the exchange y ↔ z

since x+2y− 1 = y− z. This is our first manifestation of the so-called Ward identity. In other

words we have

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = 4ie2
∫ 1

0
dxdydz δ(x+ y + z − 1)

∫ d4L

(2π)4
1

(L2 −∆+ iǫ)3
ūs

′

(p
′

)
[

γµ
(

− 1

2
L2

+ (1− z)(1 − y)q2 + (1− x2 − 2x)m2
e

)

+mex(x− 1)(p+ p
′

)µ
]

us(p). (49)

Now we use the so-called Gordon’s identity given by (with the spin matrices σµν = 2Γµν =

i[γµ, γν ]/2)

ūs
′

(p
′

)γµus(p) =
1

2me
ūs

′

(p
′

)
[

(p+ p
′

)µ − iσµνqν

]

us(p). (50)

This means that we can make the replacement

ūs
′

(p
′

)(p+ p
′

)µus(p) −→ ūs
′

(p
′

)
[

2meγ
µ + iσµνqν

]

us(p). (51)

Hence we get

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = 4ie2
∫ 1

0
dxdydz δ(x+ y + z − 1)

∫

d4L

(2π)4
1

(L2 −∆+ iǫ)3
ūs

′

(p
′

)
[

γµ
(

− 1

2
L2

+ (1− z)(1 − y)q2 + (1 + x2 − 4x)m2
e

)

+ imex(x− 1)σµνqν

]

us(p). (52)

Wick Rotation: The natural step at this stage is to actually do the 4−dimensional inte-

gral over L. Towards this end we will perform the so-called Wick rotation of the real inte-

gration variable L0 to a pure imaginary variable L4 = −iL0 which will allow us to convert

the Minkowskian signature of the metric into an Euclidean signature. Indeed the Minkowski

line element dL2 = (dL0)2 − (dLi)2 becomes under Wick rotation the Euclid line element

dL2 = −(dL4)2 − (dLi)2. In a very profound sense the quantum field theory integral becomes

under Wick rotation a statistical mechanics integral. This is of course possible because of the

location of the poles
√

~L2 +∆ − iǫ
′

and −
√

~L2 +∆ + iǫ
′

of the L0 integration and because

the integral over L0 goes to 0 rapidly enough for large positive L0. Note that the prescription

L4 = −iL0 corresponds to a rotation by π/2 counterclockwise of the L0 axis.

9



Let us now compute

∫

d4L

(2π)4
(L2)n

(L2 −∆+ iǫ)m
=

i

(2π)4
(−1)n

(−1)m

∫

d4LE
(L2

E)
n

(L2
E +∆)m

. (53)

In this equation ~LE = (L1, L2, L3, L4). Since we are dealing with Euclidean coordinates in four

dimensions we can go to spherical coordinates in four dimensions defined by (with 0 ≤ r ≤ ∞,

0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ω ≤ π)

L1 = r sinω sin θ cosφ

L2 = r sinω sin θ sin φ

L3 = r sinω cos θ

L4 = r cosω. (54)

We also know that

d4LE = r3 sin2 ω sin θdrdθdφdω. (55)

We calculate then
∫

d4L

(2π)4
(L2)n

(L2 −∆+ iǫ)m
=

i

(2π)4
(−1)n

(−1)m

∫

r2n+3dr

(r2 +∆)m

∫

sin2 ω sin θdθdφdω

=
2iπ2

(2π)4
(−1)n

(−1)m

∫

r2n+3dr

(r2 +∆)m
. (56)

The case n = 0 is easy. We have

∫

d4L

(2π)4
1

(L2 −∆+ iǫ)m
=

2iπ2

(2π)4
1

(−1)m

∫

r3dr

(r2 +∆)m

=
iπ2

(2π)4
1

(−1)m

∫

∞

∆

(x−∆)dx

xm

=
i

(4π)2
(−1)m

(m− 2)(m− 1)

1

∆m−2
. (57)

The case n = 1 turns out to be divergent

∫

d4L

(2π)4
L2

(L2 −∆+ iǫ)m
=

2iπ2

(2π)4
−1

(−1)m

∫

r5dr

(r2 +∆)m

=
iπ2

(2π)4
−1

(−1)m

∫

∞

∆

(x−∆)2dx

xm

=
iπ2

(2π)4
−1

(−1)m

(

x3−m

3−m
− 2∆

x2−m

2−m
+∆2 x

1−m

1−m

)

∞

∆

=
i

(4π)2
(−1)m+1

(m− 3)(m− 2)(m− 1)

2

∆m−3
. (58)

This does not make sense for m = 3 which is the case of interest.
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1.3.2 Pauli-Villars Regularization

We will now show that this divergence is ultraviolet in the sense that it is coming from

integrating arbitrarily high momenta in the loop integral. We will also show the existence of an

infrared divergence coming from integrating arbitrarily small momenta in the loop integral. In

order to control these infinities we need to regularize the loop integral in one way or another.

We adopt here the so-called Pauli-Villars regularization. This is given by making the following

replacement

1

(l − p)2 + iǫ
−→ 1

(l − p)2 − µ2 + iǫ
− 1

(l − p)2 − Λ + iǫ
. (59)

The infrared cutoff µ will be taken to zero at the end and thus it should be thought of as a

small mass for the physical photon. The ultraviolet cutoff Λ will be taken to ∞ at the end.

The UV cutoff Λ does also look like a a very large mass for a fictitious photon which becomes

infinitely heavy and thus unobservable in the limit Λ −→ ∞.

Now it is not difficult to see that

1

((l − p)2 − µ2 + iǫ)(l′2 −m2
e + iǫ)(l2 −m2

e + iǫ)
= 2

∫ 1

0
dxdydz δ(x+ y + z − 1)

1

D3
µ

. (60)

Dµ = D − µ2x = L2 −∆µ + iǫ , ∆µ = ∆+ µ2x. (61)

1

((l − p)2 − Λ2 + iǫ)(l′2 −m2
e + iǫ)(l2 −m2

e + iǫ)
= 2

∫ 1

0
dxdydz δ(x+ y + z − 1)

1

D3
Λ

. (62)

DΛ = D − Λ2x = L2 −∆Λ + iǫ , ∆Λ = ∆+ Λ2x. (63)

The result (52) becomes

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = 4ie2
∫ 1

0
dxdydz δ(x+ y + z − 1)

∫

d4L

(2π)4

[

1

(L2 −∆µ + iǫ)3
− 1

(L2 −∆Λ + iǫ)3

]

× ūs
′

(p
′

)
[

γµ
(

− 1

2
L2 + (1− z)(1 − y)q2 + (1 + x2 − 4x)m2

e

)

+ imex(x− 1)σµνqν

]

× us(p). (64)

We compute now (after Wick rotation)

∫

d4L

(2π)4

[

L2

(L2 −∆µ + iǫ)3
− L2

(L2 −∆Λ + iǫ)3

]

=
2i

(4π)2

[ ∫

r5dr

(r2 +∆µ)3
−
∫

r5dr

(r2 +∆Λ)3

]

=
i

(4π)2

[
∫

∞

∆µ

(x−∆µ)
2dx

x3
−
∫

∞

∆Λ

(x−∆Λ)
2dx

x3

]

=
i

(4π)2
ln

∆Λ

∆µ
. (65)
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Clearly in the limit Λ −→ ∞ this goes as ln Λ2. This shows explicitly that the divergence

problem seen earlier is a UV one,i.e. coming from high momenta. Also we compute
∫ d4L

(2π)4

[

1

(L2 −∆µ + iǫ)3
− 1

(L2 −∆Λ + iǫ)3

]

= − 2i

(4π)2

[ ∫ r3dr

(r2 +∆µ)3
−
∫ r3dr

(r2 +∆Λ)3

]

= − i

(4π)2

[ ∫

∞

∆µ

(x−∆µ)dx

x3
−
∫

∞

∆Λ

(x−∆Λ)dx

x3

]

= − i

2(4π)2

(

1

∆µ

− 1

∆Λ

)

. (66)

The second term vanishes in the limit Λ −→ ∞. We get then the result

ūs
′

(p
′

)δΓµ(p
′

, p)us(p) = (4ie2)(− i

2(4π)2
)
∫ 1

0
dxdydz δ(x+ y + z − 1)ūs

′

(p
′

)
[

γµ
(

ln
∆Λ

∆µ

+
(1− z)(1− y)q2 + (1 + x2 − 4x)m2

e

∆µ

)

+
i

∆µ

mex(x− 1)σµνqν

]

us(p)

= ūs
′

(p
′

)
(

γµ(F1(q
2)− 1)− iσµνqν

2me
F2(q

2)
)

us(p). (67)

F1(q
2) = 1 +

α

2π

∫ 1

0
dxdydz δ(x+ y + z − 1)

(

ln
Λ2x

∆µ
+

(1− z)(1 − y)q2 + (1 + x2 − 4x)m2
e

∆µ

)

.

(68)

F2(q
2) =

α

2π

∫ 1

0
dxdydz δ(x+ y + z − 1)

2m2
ex(1− x)

∆µ
. (69)

The functions F1(q
2) and F2(q

2) are known as the form factors of the electron. The form

factor F1(q
2) is logarithmically UV divergent and requires a redefinition which is termed a

renormalization. This will be done in the next section. This form factor is also IR divergent.

To see this recall that ∆µ = −yzq2 + (1− x)2m2
e + µ2x. Now set q2 = 0 and µ2 = 0. The term

proportional to 1/∆µ is

F1(0) = ... +
α

2π

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

1 + x2 − 4x

(1− x)2

= ... +
α

2π

∫ 1

0
dx
∫ 1

0
dy
∫ 1−y

0
dt δ(x− t)

1 + x2 − 4x

(1− x)2

= ... +
α

2π

∫ 1

0
dy
∫ 1−y

0
dt

1 + t2 − 4t

(1− t)2

= ...− α

2π

∫ 1

0
dy
∫ y

1
dt (1 +

2

t
− 2

t2
)

= ...− α

2π

∫ 1

0
dy (y + 2 ln y +

2

y
− 3). (70)

As it turns out this infrared divergence will cancel exactly the infrared divergence coming from

bremsstrahlung diagrams. Bremsstrahlung is scattering with radiation, i.e. scattering with

emission of very low energy photons which can not be detected.
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1.3.3 Renormalization (Minimal Subtraction) and Anomalous Magnetic Moment

Electric Charge and Magnetic Moment of the Electron: The form factors F1(q
2) and

F2(q
2) define the charge and the magnetic moment of the electron. To see this we go to

the problem of scattering of electrons from an external electromagnetic field. The probability

amplitude is given by equation (24) with q = p
′ − p. Thus

< ~p
′

s
′

out|~ps in > = −ieūs
′

(p
′

)Γλ(p
′

, p)us(p).Aλ,backgr(q)

= −ieūs
′

(p
′

)
[

γλF1(q
2) +

iσλγq
γ

2me
F2(q

2)
]

us(p).Aλ,backgr(q). (71)

Firstly we will consider an electrostatic potential φ(~x), viz Aλ,backgr(q) = (2πδ(q0)φ(~q), 0). We

have then

< ~p
′

s
′

out|~ps in > = −ieus
′

+(p
′

)
[

F1(−~q2) +
F2(−~q2)
2me

γiqi
]

us(p).2πδ(q0)φ(~q). (72)

We will assume that the electrostatic potential φ(~x) is slowly varying over a large region so that

φ(~q) is concentrated around ~q = 0. In other words the momentum ~q can be treated as small

and as a consequence the momenta ~p and ~p
′

are also small.

In the nonrelativistic limit the spinor us(p) behaves as (recall that σµp
µ = E − ~σ~p and

σ̄µp
µ = E + ~σ~p)

us(p) =

( √
σµpµξ

s

√
σ̄µpµξ

s

)

=
√
me





(1− ~σ~p
2me

+O( ~p2

m2
e
))ξs

(1 + ~σ~p
2me

+O( ~p2

m2
e
))ξs



 . (73)

We remark that the nonrelativistic limit is equivalent to the limit of small momenta. Thus by

dropping all terms which are at least linear in the momenta we get

< ~p
′

s
′

out|~ps in > = −ieus
′

+(p
′

)F1(0)u
s(p).2πδ(q0)φ(~q)

= −ieF1(0).2meξ
s
′

+ξs.2πδ(q0)φ(~q)

= −ieF1(0)φ(~q).2meδ
s
′

s.2πδ(q0). (74)

The corresponding T−matrix element is thus

< ~p
′

s
′

in|iT |~ps in > = −ieF1(0)φ(~q).2meδ
s
′

s. (75)

This should be compared with the Born approximation of the probability amplitude of scattering

from a potential V (~x) (with V (~q) =
∫

d3xV (~x)e−i~q~x)

< ~p
′

in|iT |~p in > = iV (~q). (76)

The factor 2me should not bother us because it is only due to our normalization of spinors

and so it should be omitted in the comparison. The Kronecker’s delta δs
′

s coincides with the
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prediction of nonrelativistic quantum mechanics. Thus the problem is equivalent to scattering

from the potential

V (~x) = −eF1(0)φ(~x). (77)

The charge of the electron in units of −e is precisely F1(0).

Next we will consider a vector potential ~A(~x), viz Aλ,backgr(q) = (0, 2πδ(q0) ~A(~q)). We have

< ~p
′

s
′

in|iT |~ps in > = −ieūs
′

(p
′

)
[

γiF1(−~q2) +
iσijq

j

2me
F2(−~q2)

]

us(p).Ai,backgr(~q). (78)

We will keep up to the linear term in the momenta. Thus

< ~p
′

s
′

in|iT |~ps in > = −ieus
′

+(p
′

)γ0
[

γiF1(0)−
[γi, γj]q

j

4me
F2(0)

]

us(p).Ai,backgr(~q). (79)

We compute

us
′

+(p
′

)γ0γiu
s(p) = meξ

s
′

+
(

(1− ~σ~p
′

2me

)σi(1− ~σ~p

2me

)− (1 +
~σ~p

′

2me

)σi(1 +
~σ~p

2me

)
)

ξs

= ξs
′

+
(

− (p+ p
′

)i + iǫijkqjσk
)

ξs. (80)

us
′

+(p
′

)γ0[γi, γj]q
jus(p) = 2meξ

s
′

+
(

− 2iǫijkqjσk
)

ξs. (81)

We get then

< ~p
′

s
′

in|iT |~ps in > = −ieξs
′

+
[

− (pi + p
′i)F1(0)

]

ξs.Ai,backgr(~q)

− ieξs
′

+
[

iǫijkqjσk(F1(0) + F2(0))
]

ξs.Ai,backgr(~q). (82)

The first term corresponds to the interaction term ~̂p
~̂
A +

~̂
A~̂p in the Schrödinger equation. The

second term is the magnetic moment interaction. Thus

< ~p
′

s
′

in|iT |~ps in >magn moment = −ieξs
′

+
[

iǫijkqjσk(F1(0) + F2(0))
]

ξs.Ai,backgr(~q)

= −ieξs
′

+
[

σk(F1(0) + F2(0))
]

ξs.Bk,backgr(~q)

= −i < µk > .Bk,backgr(~q).2me

= iV (~q).2me. (83)

The magnetic field is defined by ~Bbackgr(~x) = ~∇× ~Abackgr(~x) and thus Bk(~q) = iǫijkqjAi,backgr(~q).

The magnetic moment is defined by

< µk >=
e

me
ξs

′

+
[

σk

2
(F1(0) + F2(0))

]

ξs ⇔ µk = g
e

2me

σk

2
. (84)

The gyromagnetic ratio (Landé g-factor) is then given by

g = 2(F1(0) + F2(0)). (85)
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Renormalization: We have found that the charge of the electron is −eF1(0) and not −e.
This is a tree level result. Thus one must have F1(0) = 1. Substituting q2 = 0 in (68) we get

F1(0) = 1 +
α

2π

∫ 1

0
dxdydz δ(x+ y + z − 1)

(

ln
Λ2x

∆µ(0)
+

(1 + x2 − 4x)m2
e

∆µ(0)

)

.

(86)

This is clearly not equal 1. In fact F1(0) −→ ∞ logarithmically when Λ −→ ∞. We need

to redefine (renormalize) the value of F1(q
2) in such a way that F1(0) = 1. We adopt here a

prescription termed minimal subtraction which consists in subtracting from δF1(q
2) = F1(q

2)−1

(which is the actual one-loop correction to the vertex) the divergence δF1(0). We define

F ren
1 (q2) = F1(q

2)− δF1(0)

= 1 +
α

2π

∫ 1

0
dxdydz δ(x+ y + z − 1)

(

ln
∆µ(0)

∆µ(q2)
+

(1− z)(1− y)q2

∆µ(q2)
+

(1 + x2 − 4x)m2
e

∆µ(q2)

− (1 + x2 − 4x)m2
e

∆µ(0)

)

. (87)

This formula satisfies automatically F ren
1 (0) = 1.

The form factor F2(0) is UV finite since it does not depend on Λ. It is also as point out

earlier IR finite and thus one can simply set µ = 0 in this function. The magnetic moment of

the electron is proportional to the gyromagnetic ratio g = 2F1(0) + 2F2(0). Since F1(0) was

renormalized to F ren
1 (0) the renormalized magnetic moment of the electron will be proportional

to the gyromagnetic ratio

gren = 2F ren
1 (0) + 2F2(0)

= 2 + 2F2(0). (88)

The first term is precisely the prediction of the Dirac theory (tree level). The second term which

is due to the quantum one-loop effect will lead to the so-called anomalous magnetic moment.

This is given by

F2(0) =
α

π

∫ 1

0
dx
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1)

x

1− x

=
α

π

∫ 1

0
dx
∫ 1

0
dy
∫ 1−y

−y
dt δ(x− t)

x

1− x

=
α

π

∫ 1

0
dx
∫ 1

0
dy
∫ 1−y

0
dt δ(x− t)

x

1− x

=
α

π

∫ 1

0
dy
∫ 1−y

0
dt

t

1− t

=
α

π

∫ 1

0
dy(y − 1− ln y)

=
α

π

(

1

2
(y − 1)2 + y − y ln y

)1

0

=
α

2π
. (89)
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1.4 Exact Fermion 2−Point Function

For simplicity we will consider in this section a scalar field theory and then we will generalize

to a spinor field theory. As we have already seen the free 2−point function< 0|T (φ̂in(x)φ̂in(y))|0 >
is the probability amplitude for a free scalar particle to propagate from a spacetime point y to

a spacetime x. In the interacting theory the 2−point function is < Ω|T (φ̂(x)φ̂(y))|Ω > where

|Ω >= |0 > /
√

< 0|0 > is the ground state of the full Hamiltonian Ĥ.

The full Hamiltonian Ĥ commutes with the full momentum operator
~̂
P . Let |λ0 > be an

eigenstate of Ĥ with momentum ~0. There could be many such states corresponding to one-

particle states with mass mr and 2−particle and multiparticle states which have a continuous

mass spectrum starting at 2mr. By Lorentz invariance a generic state of Ĥ with a momentum

~p 6= 0 can be obtained from one of the |λ0 > by the application of a boost. Generic eigenstates

of Ĥ are denoted |λp > and they have energy Ep(λ) =
√

~p2 +m2
λ where mλ is the energy of the

corresponding |λ0 >. We have the completeness relation in the full Hilbert space

1 = |Ω >< Ω|+
∑

λ

∫

d3p

(2π)3
1

2Ep(λ)
|λp >< λp|. (90)

The sum over λ runs over all the 0−momentum eigenstates |λ0 >. Compare this with the

completeness relation of the free one-particle states given by

1 =
∫

d3p

(2π)3
1

2Ep

|~p >< ~p| , Ep =
√

~p2 +m2. (91)

By inserting the completeness relation in the full Hilbert space, the full 2−point function

becomes (for x0 > y0)

< Ω|T (φ̂(x)φ̂(y))|Ω > = < Ω|φ̂(x)|Ω >< Ω|φ̂(y)|Ω >

+
∑

λ

∫

d3p

(2π)3
1

2Ep(λ)
< Ω|φ̂(x)|λp >< λp|φ̂(y)|Ω > . (92)

The first term vanishes by symmetry (scalar field) or by Lorentz invariance (spinor and gauge

fields). By translation invariance φ̂(x) = exp(iPx)φ̂(0) exp(−iPx). Furthermore |λP >=

U |λ0 > where U is the unitary transformation which implements the Lorentz boost which

takes the momentum ~0 to the momentum ~p. Also we recall that the field operator φ̂(0) and

the ground state |Ω > are both Lorentz invariant. By using all these facts we can verify that

< Ω|φ̂(x)|λp >= e−ipx < Ω|φ̂(0)|λ0 >. We get then

< Ω|T (φ̂(x)φ̂(y))|Ω >=
∑

λ

∫

d3p

(2π)3
1

2Ep(λ)
e−ip(x−y)| < Ω|φ̂(0)|λ0 > |2. (93)

In this expression p0 = Ep(λ). We use the identity (the contour is closed below since x0 > y0)

∫

d4p

(2π)4
i

p2 −m2
λ + iǫ

e−ip(x−y) =
∫

d3p

(2π)3
1

2Ep(λ)
e−ip(x−y). (94)
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Hence we get

< Ω|T (φ̂(x)φ̂(y))|Ω > =
∑

λ

∫

d4p

(2π)4
i

p2 −m2
λ + iǫ

e−ip(x−y)| < Ω|φ̂(0)|λ0 > |2

=
∑

λ

DF (x− y;mλ)| < Ω|φ̂(0)|λ0 > |2. (95)

We get the same result for x0 < y0. We put this result into the suggestive form

< Ω|T (φ̂(x)φ̂(y))|Ω >=
∫

∞

0

dM2

2π
DF (x− y;M)ρ(M2). (96)

ρ(M2) =
∑

λ

(2π)δ(M2 −m2
λ)| < Ω|φ̂(0)|λ0 > |2. (97)

The distribution ρ(M2) is called Källén-Lehmann spectral density. The one-particle states will

contribute to the spectral density only a delta function corresponding to the pole at the exact

or physical mass mr of the scalar φ particle, viz

ρ(M2) = (2π)δ(M2 −m2
r)Z + .... (98)

We note that the mass m appearing in the Lagrangian (the bare mass) is generally different

from the physical mass. The coefficient Z is the so-called field-strength or wave function

renormalization and it is equal to the corresponding probability | < Ω|φ̂(0)|λ0 > |2. We have

then

< Ω|T (φ̂(x)φ̂(y))|Ω >= ZDF (x− y;mr) +
∫

∞

4m2
r

dM2

2π
DF (x− y;M)ρ(M2). (99)

The lower bound 4m2
r comes from the fact that there will be essentially nothing else between the

one-particle states at the simple pole p2 = m2
r and the 2−particle and multiparticle continuum

states starting at p2 = 4m2
r which correspond to a branch cut. Indeed by taking the Fourier

transform of the above equation we get

∫

d4xeip(x−y) < Ω|T (φ̂(x)φ̂(y))|Ω >=
iZ

p2 −m2
r + iǫ

+
∫

∞

4m2
r

dM2

2π

i

p2 −M2 + iǫ
ρ(M2). (100)

For a spinor field the same result holds. The Fourier transform of the full 2−point function

< Ω|T (ψ̂(x)¯̂ψ(y))|Ω > is precisely given by the free Dirac propagator in momentum space with

the physical mass mr instead of the bare mass m times a field-strength normalization Z2. In

other words

∫

d4xeip(x−y) < Ω|T (ψ̂(x)¯̂ψ(y))|Ω >=
iZ2(γ.p+mr)

p2 −m2
r + iǫ

+ ... (101)
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1.5 One-loop Calculation II: Electron Self-Energy

1.5.1 Electron Mass at One-Loop

From our discussion of the processes e−+e+ −→ µ−+µ+, e−+µ− −→ e−+µ− and electron

scattering from an external electromagnetic field we know that there are radiative corrections to

the probability amplitudes which involve correction to the external legs. From the corresponding

Feynman diagrams we can immediately infer that the first two terms (tree level+one-loop) in

the perturbative expansion of the fermion 2−point function
∫

d4xeip(x−y) < Ω|T (ψ̂(x)¯̂ψ(y))|Ω >

is given by the two diagrams 2POINTFER. By using Feynamn rules we find the expression

∫

d4xeip(x−y) < Ω|T (ψ̂(x)¯̂ψ(y))|Ω > =
i(γ.p+me)

p2 −m2
e + iǫ

+
i(γ.p+me)

p2 −m2
e + iǫ

(−ieγµ)

×
∫ d4k

(2π)4
i(γ.k +me)

k2 −m2
e + iǫ

−iηµν
(p− k)2 + iǫ

(−ieγν) i(γ.p +me)

p2 −m2
e + iǫ

=
i(γ.p+me)

p2 −m2
e + iǫ

+
i(γ.p+me)

p2 −m2
e + iǫ

(−iΣ2(p))
i(γ.p+me)

p2 −m2
e + iǫ

.

(102)

The second term is the so-called self-energy of the electron. It is given in terms of the loop

integral Σ2(p) which in turn is given by

−iΣ2(p) = (−ie)2
∫

d4k

(2π)4
γµ

i(γ.k +me)

k2 −m2
e + iǫ

γµ
−i

(p− k)2 + iǫ
. (103)

Sometimes we will also call this quantity the electron self-energy. The two-point function
∫

d4xeip(x−y) < Ω|T (ψ̂(x)¯̂ψ(y))|Ω > is not of the form (101). To see this more clearly we

rewrite the above equation in the form

∫

d4xeip(x−y) < Ω|T (ψ̂(x)¯̂ψ(y))|Ω > =
i

γ.p−me

+
i

γ.p−me

(−iΣ2(p))
i

γ.p−me

=
i

γ.p−me

[

1 + Σ2(p)
1

γ.p−me

]

. (104)

By using now the fact that Σ2(p) commutes with γ.p (see below) and the fact that it is supposed

to be small of order e2 we rewrite this equation in the form

∫

d4xeip(x−y) < Ω|T (ψ̂(x)¯̂ψ(y))|Ω > =
i

γ.p−me − Σ2(p)
. (105)

This is almost of the desired form (101). The loop-integral Σ2(p) is precisely the one-loop

correction to the electron mass.

Physically what we have done here is to add together all the Feynman diagrams with an

arbitrary number of insertions of the loop integral Σ2(p). These are given by the Feynman
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diagrams SELF. By using Feynamn rules we find the expression

∫

d4xeip(x−y) < Ω|T (ψ̂(x)¯̂ψ(y))|Ω > =
i

γ.p−me
+

i

γ.p−me
(−iΣ2(p))

i

γ.p−me

+
i

γ.p−me

(−iΣ2(p))
i

γ.p−me

(−iΣ2(p))
i

γ.p−me

+ ...

=
i

γ.p−me

[

1 + Σ2(p)
1

γ.p−me
+ (Σ2(p)

1

γ.p−me
)2 + ...

]

.

(106)

This is a geometric series. The summation of this geometric series is precisely (105).

The loop integral −iΣ2(p) is an example of a one-particle irreducible (1PI) diagram. The

one-particle irreducible diagrams are those diagrams which can not be split in two by cutting

a single internal line. The loop integral −iΣ2(p) is the first 1PI diagram (order e2) in the

sum −iΣ(p) of all 1PI diagrams with 2 fermion lines shown on ONEPARTICLE. Thus the full

two-point function
∫

d4xeip(x−y) < Ω|T (ψ̂(x)¯̂ψ(y))|Ω > is actually of the form

∫

d4xeip(x−y) < Ω|T (ψ̂(x)¯̂ψ(y))|Ω > =
i

γ.p−me
+

i

γ.p−me
(−iΣ(p)) i

γ.p −me

+
i

γ.p−me
(−iΣ(p)) i

γ.p−me
(−iΣ(p)) i

γ.p−me

+ ...

=
i

γ.p−me − Σ(p)
. (107)

The physical or renormalized massmr is defined as the pole of the two-point function
∫

d4xeip(x−y) <

Ω|T (ψ̂(x)¯̂ψ(y))|Ω >, viz

(γ.p−me − Σ(p))γ.p=mr
= 0. (108)

Since Σ(p) = Σ(γ.p) (see below) we have

mr −me − Σ(mr) = 0. (109)

We expand Σ(p) = Σ(γ.p) as

Σ(p) = Σ(mr) + (γ.p−mr)
dΣ

dγ.p
|γ.p=mr

+O((γ.p−mr)
2). (110)

Hence

γ.p−me − Σ(p) = (γ.p−mr)
1

Z2
− O((γ.p−mr)

2)

= (γ.p−mr)
1

Z2
(1 +O

′

((γ.p−mr))). (111)
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Z−1
2 = 1− dΣ

dγ.p
|γ.p=mr

. (112)

Thus
∫

d4xeip(x−y) < Ω|T (ψ̂(x)¯̂ψ(y))|Ω > =
iZ2

γ.p−mr

. (113)

This is the desired form (101). The correction to the mass is given by (109) or equivalently

δmr = mr −me = Σ(mr). (114)

We are interested in just the one-loop correction. Thus

δmr = mr −me = Σ2(mr). (115)

We evaluate the loop integral Σ2(p) by the same method used for the vertex correction, i.e. we

introduce Feynman parameters, we Wick rotate and then we regularize the ultraviolet diver-

gence using the Pauli-Villars method. Clearly the integral is infrared divergent so we will also

add a small photon mass. In summary we would like to compute

−iΣ2(p) = (−ie)2
∫

d4k

(2π)4
γµ

i(γ.k +me)

k2 −m2
e + iǫ

γµ

[ −i
(p− k)2 − µ2 + iǫ

− −i
(p− k)2 − Λ2 + iǫ

]

.

(116)

We have (with L = k − (1− x1)p, ∆µ = −x1(1− x1)p
2 + x1m

2
e + (1− x1)µ

2)

1

k2 −m2
e + iǫ

1

(p− k)2 − µ2 + iǫ
=

∫

dx1
1

[

x1(k2 −m2
e + iǫ) + (1− x1)((p− k)2 − µ2 + iǫ)

]2

=
∫

dx1
1

(L2 −∆µ + iǫ)2
. (117)

Thus

−iΣ2(p) = −e2
∫ d4k

(2π)4
γµ(γ.k +me)γµ

[ ∫

dx1
1

(L2 −∆µ + iǫ)2
−
∫

dx1
1

(L2 −∆Λ + iǫ)2

]

= −e2
∫

d4k

(2π)4
(−2γ.k + 4me)

[ ∫

dx1
1

(L2 −∆µ + iǫ)2
−
∫

dx1
1

(L2 −∆Λ + iǫ)2

]

= −e2
∫

dx1(−2(1− x1)γ.p+ 4me)
∫

d4L

(2π)4

[

1

(L2 −∆µ + iǫ)2
− 1

(L2 −∆Λ + iǫ)2

]

= −ie2
∫

dx1(−2(1− x1)γ.p+ 4me)
∫

d4LE

(2π)4

[

1

(L2
E +∆µ)2

− 1

(L2
E +∆Λ)2

]

= − ie2

8π2

∫

dx1(−2(1− x1)γ.p+ 4me)
∫

r3dr
[

1

(r2 +∆µ)2
− 1

(r2 +∆Λ)2

]

= − ie2

16π2

∫

dx1(−2(1 − x1)γ.p+ 4me) ln
∆Λ

∆µ
. (118)
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The final result is

Σ2(p) =
α

2π

∫

dx1(−(1− x1)γ.p + 2me) ln
(1− x1)Λ

2

−x1(1− x1)p2 + x1m2
e + (1− x1)µ2

. (119)

This is logarithmically divergent. Thus the mass correction or shift at one-loop is logarithmically

divergent given by

δmr = Σ2(γ.p = mr) =
αme

2π

∫

dx1(2− x1) ln
x1Λ

2

(1− x1)2m2
e + x1µ2

. (120)

The physical mass is therefore given by

mr = me

[

1 +
α

2π

∫

dx1(2− x1) ln
x1Λ

2

(1− x1)2m2
e + x1µ2

]

. (121)

Clearly the bare mass me must depend on the cutoff Λ in such a way that in the limit Λ −→ ∞
the physical mass mr remains finite.

1.5.2 The Wave-Function Renormalization Z2

At one-loop order we also need to compute the wave function renormalization. We have

Z−1
2 = 1− dΣ2

dγ.p
|γ.p=mr

= 1− α

2π

∫

dx1

[

− (1− x1) ln
(1− x1)Λ

2

−x1(1− x1)p2 + x1m2
e + (1− x1)µ2

+ (−(1− x1)γ.p + 2me)(2γ.p)
x1(1− x1)

−x1(1− x1)p2 + x1m2
e + (1− x1)µ2

]

γ.p=mr

= 1− α

2π

∫

dx1

[

− (1− x1) ln
(1− x1)Λ

2

x21m
2
e + (1− x1)µ2

+
2m2

ex1(1− x1)(1 + x1)

x21m
2
e + (1− x1)µ2

]

. (122)

Thus

Z2 = 1 + δZ2. (123)

δZ2 =
α

2π

∫ 1

0
dx1

[

− (1− x1) ln
(1− x1)Λ

2

x21m
2
e + (1− x1)µ2

+
2m2

ex1(1− x1)(1 + x1)

x21m
2
e + (1− x1)µ2

]

. (124)

A very deep observation is given by the identity δZ2 = δF1(0) = F1(0)−1 where F1(q
2) is given

by (68). We have

δF1(0) =
α

2π

∫

dxdydz δ(x+ y + z − 1)
[

ln
xΛ2

(1− x)2m2
e + xµ2

+
m2

e(1 + x2 − 4x)

(1− x)2m2
e + xµ2

]

.

(125)
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Clearly for x = 0 we have
∫ 1
0 dy

∫ 1
0 dz δ(y+z−1) = 1 whereas for x = 1 we have

∫ 1
0 dy

∫ 1
0 dz δ(y+

z) = 0. In general
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1) = 1− x. (126)

The proof is simple. Since 0 ≤ x ≤ 1 we have 0 ≤ 1 − x ≤ 1 and 1/(1 − x) ≥ 1. We shift the

variables as y = (1− x)y
′

and z = (1− x)z
′

. We have
∫ 1

0
dy
∫ 1

0
dz δ(x+ y + z − 1) = (1− x)2

∫ 1/(1−x)

0
dy

′

∫ 1/(1−x)

0
dz

′ 1

1− x
δ(y

′

+ z
′ − 1)

= 1− x. (127)

By using this identity we get

δF1(0) =
α

2π

∫

dx(1− x)
[

ln
xΛ2

(1− x)2m2
e + xµ2

+
m2

e(1 + x2 − 4x)

(1− x)2m2
e + xµ2

]

=
α

2π

∫

dx
[

x ln
xΛ2

(1− x)2m2
e + xµ2

+ (1− 2x) ln
xΛ2

(1− x)2m2
e + xµ2

+
m2

e(1− x)(1 + x2 − 4x)

(1− x)2m2
e + xµ2

]

=
α

2π

∫

dx
[

x ln
xΛ2

(1− x)2m2
e + xµ2

+
d(x− x2)

dx
ln

xΛ2

(1− x)2m2
e + xµ2

+
m2

e(1− x)(1 + x2 − 4x)

(1− x)2m2
e + xµ2

]

=
α

2π

∫

dx
[

x ln
xΛ2

(1− x)2m2
e + xµ2

− (x− x2)
d

dx
ln

xΛ2

(1− x)2m2
e + xµ2

+
m2

e(1− x)(1 + x2 − 4x)

(1− x)2m2
e + xµ2

]

=
α

2π

∫

dx
[

x ln
xΛ2

(1− x)2m2
e + xµ2

− m2
e(1− x)(1 − x2)

(1− x)2m2
e + xµ2

+
m2

e(1− x)(1 + x2 − 4x)

(1− x)2m2
e + xµ2

]

=
α

2π

∫

dx
[

x ln
xΛ2

(1− x)2m2
e + xµ2

− 2m2
ex(1− x)(2− x)

(1− x)2m2
e + xµ2

]

=
α

2π

∫

dt
[

(1− t) ln
(1− t)Λ2

t2m2
e + (1− t)µ2

− 2m2
et(1− t)(1 + t)

t2m2
e + (1− t)µ2

]

. (128)

We can immediately conclude that δF1(0) = −δZ2.

1.5.3 The Renormalization Constant Z1

In our calculation of the vertex correction we have used the bare propagator i/(γ.p −me)

which has a pole at the bare mass m = me which is as we have seen is actually a divergent

quantity. This calculation should be repeated with the physical propagator iZ2/(γ.p − mr).

This propagator is obtained by taking the sum of the Feynman diagrams shown on SELF and

ONEPARTICLE.

We reconsider the problem of scattering of an electron from an external electromagnetic

field. The probability amplitude is given by the formula (13). We rewrite this formula as 1

< ~p
′

s
′

out|~ps in > = −
[

ūs
′

(p
′

)(γ.p
′ −me)

]

α′

∫

d4x
∫

d4x
′

e−ipx+ip
′

x
′

< Ω|T (ψ̂α′ (x
′

)
¯̂
ψα(x))|Ω >

1In writing this formula in this form we use the fact that |0 out >= |0 in >= |0 > and |Ω >= |0 > /
√

< 0|0 >.

Recall that dividing by < 0|0 > is equivalent to taking into account only connected Feynman graphs.
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×
[

(γ.p−me)u
s(p)

]

α
. (129)

We sum up the quantum corrections to the two external legs by simply making the replacements

γ.p
′ −me −→ (γ.p

′ −mr)/Z2 , γ.p−me −→ (γ.p−mr)/Z2. (130)

The probability for the spinor field to create or annihilate a particle is precisely Z2 since

< Ω|ψ̂(0)|~p, s >=
√
Z2u

s(p). Thus one must also replace us(p) and ūs
′

(p
′

) by
√
Z2u

s(p) and√
Z2ū

s
′

(p
′

).

Furthermore from our previous experience we know that the 2-point function
∫

d4x
∫

d4x
′

e−ipx+ip
′

x
′

<

Ω|T (ψ̂α′ (x
′

)
¯̂
ψα(x))|Ω > will be equal to the product of the two external propagators iZ2/(γ.p−

mr) and iZ2/(γ.p
′ −mr) times the amputated electron-photon vertex

∫

d4x
∫

d4x
′

e−ipx+ip
′

x
′

<

Ω|T (ψ̂α′ (x
′

)
¯̂
ψα(x))|Ω >amp. Thus we make the replacement

< Ω|T (ψ̂α′ (x
′

)
¯̂
ψα(x))|Ω >−→ iZ2

γ.p′ −mr

< Ω|T (ψ̂α′ (x
′

)
¯̂
ψα(x))|Ω >

iZ2

γ.p−mr

. (131)

The formula of the probability amplitude < ~p
′

s
′

out|~ps in > becomes

< ~p
′

s
′

out|~ps in > = Z2ū
s
′

(p
′

)α′

∫

d4x
∫

d4x
′

e−ipx+ip
′

x
′

< Ω|T (ψ̂α′ (x
′

)
¯̂
ψα(x))|Ω >amp u

s(p)α.

(132)

The final result is that the amputated electron-photon vertex Γλ(p
′

, p) must be multiplied by

Z2, viz

< ~p
′

s
′

out|~ps in > = −ie
(

ūs
′

(p
′

)Z2Γλ(p
′

, p)us(p)
)

Aλ,backgr(q). (133)

What we have done here is to add together the two Feynman diagrams VERTEXCOR. In the

one-loop diagram the internal electron propagators are replaced by renormalized propagators.

In general an amputated Green’s function with n incoming lines and m outgoing lines must

be multiplied by a factor (
√
Z2)

n+m in order to yield correctly the corresponding S−matrix

element.

The calculation of the above probability amplitude will proceed exactly as before. The

result by analogy with equation (71) must be of the form

< ~p
′

s
′

out|~ps in > = −ieūs
′

(p
′

)
[

γλF
′

1(q
2) +

iσλγq
γ

2mr
F

′

2(q
2)
]

us(p).Aλ,backgr(q). (134)

In other words

Z2Γλ(p
′

, p) = γλF
′

1(q
2) +

iσλγq
γ

2mr

F
′

2(q
2)

= γλF1(q
2) +

iσλγq
γ

2mr
F2(q

2) + γλ∆F1(q
2) +

iσλγq
γ

2mr
∆F2(q

2). (135)
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We are interested in order α. Since Z2 = 1 + δZ2 where δZ2 = O(α) we have Z2Γλ = Γλ +

δZ2Γλ = Γλ + δZ2γλ to order α. By using also the fact that F
′

2 = O(α) we must have ∆F2 = 0.

We conclude that we must have ∆F1 = δZ2. Since δZ2 = −δF1(0) we have the final result

F
′

1(q
2) = F1(q

2) + ∆F1(q
2)

= F1(q
2) + δZ2

= F1(q
2)− δF1(0)

= 1 + δF1(q
2)− δF1(0)

= F ren
1 (q2). (136)

We introduce a new renormalization constant Z1 by the relation

Z1Γλ(q = 0) = γλ. (137)

The requirement that F ren
1 (0) = 1 is equivalent to the statement that Z1 = Z2.

1.6 Ward-Takahashi Identities

Ward-Takahashi Identities: Let us start by considering the 3−point function ∂µT (ĵ
µ(x)ψ̂(y)

¯̂
ψ(y

′

).

For y0 > y
′

0 we have explicitly

T (ĵµ(x)ψ̂(y)
¯̂
ψ(y

′

)) = θ(x0 − y0)ĵ
µ(x)ψ̂(y)

¯̂
ψ(y

′

) + θ(y
′

0 − x0)ψ̂(y)
¯̂
ψ(y

′

)ĵµ(x)

+ θ(y0 − x0)θ(x0 − y
′

0)ψ̂(y)ĵ
µ(x)

¯̂
ψ(y

′

). (138)

Recall that ĵµ = e
¯̂
ψγµψ̂. We compute immediately that (using current conservation ∂µĵ

µ = 0)

∂µT (ĵ
µ(x)ψ̂(y)

¯̂
ψ(y

′

)) = δ(x0 − y0)ĵ
0(x)ψ̂(y)

¯̂
ψ(y

′

)− δ(y
′

0 − x0)ψ̂(y)
¯̂
ψ(y

′

)ĵ0(x)

− δ(y0 − x0)θ(x0 − y
′

0)ψ̂(y)ĵ
0(x)

¯̂
ψ(y

′

) + θ(y0 − x0)δ(x0 − y
′

0)ψ̂(y)ĵ
0(x)

¯̂
ψ(y

′

)

= δ(x0 − y0)[ĵ
0(x), ψ̂(y)]

¯̂
ψ(y

′

)− δ(y
′

0 − x0)ψ̂(y)[
¯̂
ψ(y

′

), ĵ0(x)]. (139)

We compute [ĵ0(x), ψ̂(y)] = −eδ3(~x− ~y)ψ̂(y) and [
¯̂
ψ(y

′

), ĵ0(x)] = −eδ3(~x− ~y
′

)
¯̂
ψ(y

′

). Hence we

get

∂µT (ĵ
µ(x)ψ̂(y)

¯̂
ψ(y

′

)) = −eδ4(x− y)ψ̂(y)
¯̂
ψ(y

′

) + eδ(y
′ − x)ψ̂(y)

¯̂
ψ(y

′

). (140)

The full result is clearly

∂µT (ĵ
µ(x)ψ̂(y)

¯̂
ψ(y

′

)) =
(

− eδ4(x− y) + eδ(y
′ − x)

)

T (ψ̂(y)
¯̂
ψ(y

′

)). (141)

In general we would have

∂µT (ĵ
µ(x)ψ̂(y1)

¯̂
ψ(y

′

1)...ψ̂(yn)
¯̂
ψ(y

′

n)Â
α1(z1)...) =

n
∑

i=1

(

− eδ4(x− yi) + eδ(y
′

i − x)
)

T (ψ̂(y1)
¯̂
ψ(y

′

1)...

× ψ̂(yn)
¯̂
ψ(y

′

n)Â
α1(z1)...). (142)

These are the Ward-Takahashi identities. Another important application of these identities is

∂µT (ĵ
µ(x)Âα1(z1)...) = 0. (143)
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Exact Photon Propagator: The exact photon propagator is defined by

iDµν(x− y) = < 0 out|T (Âµ(x)Âν(y))|0 in >

= < 0 in|T (Âµ
in(x)Â

ν
in(y)S)|0 in >

= iDµν
F (x− y) +

(−i)2
2

∫

d4z1

∫

d4z2 < 0 in|T (Âµ
in(x)Â

ν
in(y)Â

ρ1
in (z1)Â

ρ2
in (z2))|0 in >

× < 0 in|T (ĵin,ρ1(z1)ĵin,ρ2(z2))|0 in > +...

= iDµν
F (x− y) + (−i)2

∫

d4z1iD
µρ1
F (x− z1)

∫

d4z2iD
νρ2
F (y − z2) < 0 in|T (ĵin,ρ1(z1)

× ĵin,ρ2(z2))|0 in > +... (144)

This can be rewritten as

iDµν(x− y) = iDµν
F (x− y)− i

∫

d4z1iD
µρ1
F (x− z1) < 0 in|T (ĵin,ρ1(z1)Âν

in(y)
(

− i
∫

d4z2Â
ρ2
in (z2)

× ĵin,ρ2(z2)
)

)|0 in > +... (145)

This is indeed correct since we can write the exact photon propagator in the form

iDµν(x− y) = iDµν
F (x− y)− i

∫

d4z1iD
µρ1
F (x− z1) < 0 out|T (ĵρ1(z1)Âν(y)|0 in > .

= iDµν
F (x− y)− i

∫

d4z1iD
µρ1
F (z1) < 0 out|T (ĵρ1(z1 + x)Âν(y)|0 in > .

(146)

See the Feynman diagram EXACTPHOTON. By using the identity (143) we see immediately

that

i∂µ,xD
µν(x− y) = i∂µ,xD

µν
F (x− y). (147)

In momentum space this reads

qµD
µν(q) = qµD

µν
F (q). (148)

This expresses transversality of the vacuum polarization (more on this below).

Exact Vertex Function: Let us now discuss the exact vertex function V µ(p
′

, p) defined by

−ie(2π)4δ4(p′ − p− q)V µ(p
′

, p) =
∫

d4x
∫

d4x1

∫

d4y1 e
i(p

′

x1−py1−qx) < Ω|T (Âµ(x)ψ̂(x1)
¯̂
ψ(y1))|Ω > .

(149)

See the Feynman graph VERTEXEXACT1. We compute (with Dµν
F (q) = −iηµν/(q2 + iǫ))

∫

d4xe−iqx < 0 out|T (Âµ(x)ψ̂(x1)
¯̂
ψ(y1))|0 in > =

∫

d4xe−iqx < 0 in|T (Âµ
in(x)ψ̂in(x1)

¯̂
ψin(y1)S)|0 in >

= −i
∫

d4xe−iqx
∫

d4z < 0 in|T (Âµ
in(x)Â

ν
in(z)ĵin,ν(z)
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× ψ̂in(x1)
¯̂
ψin(y1))|0 in > +...

= −i
∫

d4xe−iqx
∫

d4ziDµν
F (x− z) < 0 in|T (ĵin,ν(z)

× ψ̂in(x1)
¯̂
ψin(y1))|0 in > +...

= −iDµν
F (q)

∫

d4xe−iqx < 0 in|T (ĵin,ν(x)ψ̂in(x1)

× ¯̂
ψin(y1))|0 in > +... (150)

This result holds to all orders of perturbation. In other words we must have
∫

d4xe−iqx < Ω|T (Âµ(x)ψ̂(x1)
¯̂
ψ(y1))|Ω > = −iDµν(q)

∫

d4xe−iqx < Ω|T (ĵν(x)ψ̂(x1)¯̂ψ(y1))|Ω > .

(151)

It is understood that Dµν(q) is the full photon propagator. We must then have

−ie(2π)4δ4(p′ − p− q)V µ(p
′

, p) = −iDµν(q)
∫

d4x
∫

d4x1

∫

d4y1 e
i(p

′

x1−py1−qx) < Ω|T (ĵν(x)ψ̂(x1)

× ¯̂
ψ(y1))|Ω > . (152)

In terms of the vertex function Γµ(p
′

, p) defined previously and the exact fermion propagators

S(p), S(p
′

) and the exact photon propagator Dµν(q) we have

V µ(p
′

, p) = Dµν(q)S(p
′

)Γν(p
′

, p)S(p). (153)

This expression means that the vertex function can be decomposed into the QED proper vertex

dressed with the full electron and photon propagators. See the Feynman graph VERTEXEX-

ACT.

We have then

−ie(2π)4δ4(p′ − p− q)Dµν(q)S(p
′

)Γν(p
′

, p)S(p) = −iDµν(q)
∫

d4x
∫

d4x1

∫

d4y1 e
i(p

′

x1−py1−qx)

× < Ω|T (ĵν(x)ψ̂(x1)¯̂ψ(y1))|Ω > . (154)

We contract this equation with qµ we obtain

−ie(2π)4δ4(p′ − p− q)qµD
µν(q)S(p

′

)Γν(p
′

, p)S(p) = −iqµDµν(q)
∫

d4x
∫

d4x1

∫

d4y1 e
i(p

′

x1−py1−qx)

× < Ω|T (ĵν(x)ψ̂(x1)¯̂ψ(y1))|Ω > . (155)

By using the identity qµD
µν(q) = qµD

µν
F (q) = −iqν/(q2 + iǫ) we obtain

−ie(2π)4δ4(p′ − p− q)S(p
′

)qνΓν(p
′

, p)S(p) = −iqν
∫

d4x
∫

d4x1

∫

d4y1 e
i(p

′

x1−py1−qx)

× < Ω|T (ĵν(x)ψ̂(x1)¯̂ψ(y1))|Ω >

= −
∫

d4x
∫

d4x1

∫

d4y1 e
i(p

′

x1−py1−qx)

× ∂ν,x < Ω|T (ĵν(x)ψ̂(x1)¯̂ψ(y1))|Ω > . (156)
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By using the identity (141) we get

−ie(2π)4δ4(p′ − p− q)S(p
′

)qνΓν(p
′

, p)S(p) = −
∫

d4x
∫

d4x1

∫

d4y1 e
i(p

′

x1−py1−qx)

× (−eδ4(x− x1) + eδ4(x− y1)) < Ω|T (ψ̂(x1)¯̂ψ(y1))|Ω >

= e
∫

d4x1

∫

d4y1 e
i(p

′

−q)x1 e−ipy1 < Ω|T (ψ̂(x1)¯̂ψ(y1))|Ω >

− e
∫

d4x1

∫

d4y1 e
ip

′

x1 e−i(p+q)y1 < Ω|T (ψ̂(x1)¯̂ψ(y1))|Ω >

= e(2π)4δ4(p
′ − p− q)(S(p)− S(p

′

)). (157)

In the above equation we have made use of the Fourier transform

< Ω|T (ψ̂(x1)¯̂ψ(y1))|Ω >=
∫

d4k

(2π)4
S(k) e−ik(x1−y1). (158)

We derive then the fundamental result

−iS(p′

)qνΓν(p
′

, p)S(p) = S(p)− S(p
′

). (159)

Equivalently we have

−iqνΓν(p
′

, p) = S−1(p
′

)− S−1(p). (160)

For our purposes this is the most important of all Ward-Takahashi identities.

We know that for p near mass shell, i.e. p2 = m2
r , the propagator S(p) behaves as S(p) =

iZ2/(γ.p − mr). Since p
′

= p + q the momentum p
′

is near mass shell only if p is near mass

shell and q goes to 0. Thus near mass shell we have

−iqνΓν(p, p) = −iZ−1
2 qνγν . (161)

In other words

Γν(p, p) = Z−1
2 γν . (162)

The renormalization constant Z1 is defined precisely by

Γν(p, p) = Z−1
2 γν . (163)

In other words we have

Z1 = Z2. (164)

The above Ward-Takahashi identity guarantees F ren
1 (0) = 1 to all orders in perturbation theory.
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1.7 One-Loop Calculation III: Vacuum Polarization

1.7.1 The Renormalization Constant Z3 and Renormalization of the Electric Charge

The next natural question we can ask is what is the structure of the exact 2−point photon

function. At tree level we know that the answer is given by the bare photon propagator, viz

∫

d4xeiq(x−y) < Ω|T (Âµ(x)Âν(y))|Ω > =
−iηµν
q2 + iǫ

+ .... (165)

Recall the case of the electron bare propagator which was corrected at one-loop by the electron

self-energy −iΣ2(p). By analogy the above bare photon propagator will be corrected at one-

loop by the photon self-energy iΠµν
2 (q) shown on figure 2POINTPH. By using Feynman rules

we have

iΠµν
2 (q) = (−1)

∫

d4k

(2π)4
tr(−ieγµ) i(γ.k +me)

k2 −m2
e + iǫ

(−ieγν) i(γ.(k + q) +me)

(k + q)2 −m2
e + iǫ

. (166)

This self-energy is the essential ingredient in vacuum polarization diagrams. See for example

(7).

Similarly to the electron case, the photon self-energy iΠµν
2 (q) is only the first diagram (which

is of order e2) among the one-particle irreducible (1PI) diagrams with 2 photon lines which we

will denote by iΠµν(q). See figure 2POINTPH1. By Lorentz invariance iΠµν(q) must be a linear

combination of ηµν and qµν . Now the full 2−point photon function will be obtained by the sum

of all diagrams with an increasing number of insertions of the 1PI diagram iΠµν(q). This is

shown on figure 2POINTPHE. The corresponding expression is

∫

d4xeiq(x−y) < Ω|T (Âµ(x)Âν(y))|Ω > =
−iηµν
q2 + iǫ

+
−iηµρ
q2 + iǫ

iΠρσ(q)
−iηνσ
q2 + iǫ

+
−iηµρ
q2 + iǫ

iΠρσ(q)
−iησλ
q2 + iǫ

iΠλη(q)
−iηνη
q2 + iǫ

+ ....(167)

By comparing with (146) we get

−i
∫

d4xeiq(x−y)
∫

d4z1iD
µρ1
F (z1) < 0 out|T (ĵρ1(z1 + x)Âν(y)|0 in > =

−iηµρ
q2 + iǫ

iΠρσ(q)
−iηνσ
q2 + iǫ

+ ... (168)

By contracting both sides with qµ and using current conservation ∂µĵ
µ = 0 we obtain the Ward

identity

qµΠµν(q) = 0. (169)

Hence we must have

Πµν(q) = (q2ηµν − qµqν)Π(q2). (170)
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It is straightforward to show that the exact 2−point photon function becomes

∫

d4xeiq(x−y) < Ω|T (Âµ(x)Âν(y))|Ω > =
−iηµν
q2 + iǫ

+
−iηµρ
q2 + iǫ

(ηρν − qρqν

q2
)(Π + Π2 + ...)

=
−iqµqν
(q2)2

+
−i

q2 + iǫ

1

1− Π(q2)
(ηµν − qµqν

q2
). (171)

This propagator has a single pole at q2 = 0 if the function Π(q2) is regular at q2 = 0. This is

indeed true to all orders in perturbation theory. Physically this means that the photon remains

massless. We define the renormalization constant Z3 as the residue at the q2 = 0 pole, viz

Z3 =
1

1− Π(0)
. (172)

The terms proportional to qµqν in the above exact propagator will lead to vanishing contribu-

tions inside a probability amplitude, i.e. when we connect the exact 2−point photon function

to at least one electron line. This is another manifestation of the Ward-Takahashi identities.

We give an example of this cancellation next.

The contribution of the tree level plus vacuum polarization diagrams to the probability

amplitude of the process e− + e+ −→ µ− + µ+ was given by

−e2(2π)4δ4(k + p− k
′ − p

′

)(ūs
′

(p
′

)γµu
s(p))

(−iηµν
q2

+
−iηµρ
q2

iΠρσ
2 (q)

−iηνσ
q2

)

(ūr
′

(k
′

)γνu
r(k)).

(173)

By using the exact 2−point photon function this becomes

−e2(2π)4δ4(k + p− k
′ − p

′

)(ūs
′

(p
′

)γµu
s(p))

(−iqµqν
(q2)2

+
−i

q2 + iǫ

1

1−Π(q2)
(ηµν − qµqν

q2
)
)

(ūr
′

(k
′

)γνu
r(k)).

(174)

We can check that ūs
′

(p
′

)γµq
µus(p) = ūs

′

(p
′

)(γµp
µ − γµp

′µ)us(p) = 0. We get then the proba-

bility amplitude

−e2(2π)4δ4(k + p− k
′ − p

′

)(ūs
′

(p
′

)γµu
s(p))

( −i
q2 + iǫ

1

1−Π(q2)
ηµν

)

(ūr
′

(k
′

)γνu
r(k)). (175)

For scattering with very low q2 this becomes

−e2(2π)4δ4(k + p− k
′ − p

′

)(ūs
′

(p
′

)γµu
s(p))

( −i
q2 + iǫ

1

1− Π(0)
ηµν

)

(ūr
′

(k
′

)γνu
r(k)) =

−e2R(2π)4δ4(k + p− k
′ − p

′

)(ūs
′

(p
′

)γµu
s(p))

( −i
q2 + iǫ

ηµν
)

(ūr
′

(k
′

)γνu
r(k)). (176)

This looks exactly like the tree level contribution with an electric charge eR given by

eR = e
√

Z3. (177)
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The electric charge eR is called the renormalized electric charge. This shift of the electric

charge relative to tree level is a general feautre since the amplitude for any process with very

low momentum transfer q2 when we replace the bare photon propagator with the exact photon

propagator will appear as a tree level process with the renoramlized electric charge eR.

Using the definition of the renormalized electric charge eR the above probability amplitude

can now be put in the form

−e2(2π)4δ4(k + p− k
′ − p

′

)(ūs
′

(p
′

)γµu
s(p))

( −i
q2 + iǫ

1

1−Π(q2)
ηµν

)

(ūr
′

(k
′

)γνu
r(k)) =

−e2R(2π)4δ4(k + p− k
′ − p

′

)(ūs
′

(p
′

)γµu
s(p))

( −i
q2 + iǫ

1− Π(0)

1−Π(q2)
ηµν

)

(ūr
′

(k
′

)γνu
r(k)) =

−e2eff(2π)4δ4(k + p− k
′ − p

′

)(ūs
′

(p
′

)γµu
s(p))

( −i
q2 + iǫ

ηµν
)

(ūr
′

(k
′

)γνu
r(k)) (178)

The effective charge eeff is momentum dependent given by

e2eff = e2R
1− Π(0)

1−Π(q2)
=

e2

1−Π(q2)
. (179)

At one-loop order we have Π = Π2 and thus the effective charge becomes

e2eff =
e2R

1− Π2(q2) + Π2(0)
. (180)

1.7.2 Dimensional Regularization

We now evaluate the loop integral Π2(q
2) given by

Πµν
2 (q) = ie2

∫

d4k

(2π)4
trγµ

(γ.k +me)

k2 −m2
e + iǫ

γν
(γ.(k + q) +me)

(k + q)2 −m2
e + iǫ

. (181)

This integral is quadratically UV divergent as one can see from the rough estimate

Πµν
2 (q) ∼

∫ Λ

0
k3dk

1

k

1

k

∼ 1

2
Λ2. (182)

This can be made more precise using this naive cutoff procedure and we will indeed find that it

is quadratically UV divergent. This is a severe divergence which is stronger than the logarithmic

divergences we encountered in previous calculations. In any case a naive cutoff will break the

Ward-Takahashi identity Z1 = Z2. As in previous cases the Pauli-Villars regularization can be

used here and it will preserve the Ward-Takahashi identity Z1 = Z2. However this method is

very complicated to implement in this case.
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We will employ in this section a more powerful and more elegant regularization method

known as dimensional regularization. The idea is simply to compute the loop integral Π2(q
2)

not in 4 dimensions but in d dimensions. The result will be an analytic function in d. We are

clearly interested in the limit d −→ 4.

We start as before by introducing Feynman parameters, namely

1

k2 −m2
e + iǫ

1

(k + q)2 −m2
e + iǫ

=
∫ 1

0
dx
∫ y

0
δ(x+ y − 1)

1
[

x(k2 −m2
e + iǫ) + y((k + q)2 −m2

e + iǫ)
]2

=
∫ 1

0
dx

1
[

(k + (1− x)q)2 + x(1− x)q2 −m2
e + iǫ

]2

=
∫ 1

0
dx

1
[

l2 −∆+ iǫ
]2 . (183)

We have defined l = k + (1− x)q and ∆ = m2
e − x(1 − x)q2. Furthermore

trγµ(γ.k +me)γ
ν(γ.(k + q) +me) = 4kµ(k + q)ν + 4kν(k + q)µ − 4ηµν(k.(k + q)−m2

e)

= 4(lµ − (1− x)qµ)(lν + xqν) + 4(lν − (1− x)qν)(lµ + xqµ)

− 4ηµν((l − (1− x)q).(l + xq)−m2
e)

= 4lµlν − 4(1− x)xqµqν + 4lν lµ − 4(1− x)xqνqµ

− 4ηµν(l2 − x(1 − x)q2 −m2
e) + ... (184)

We have now the d−dimensional loop integral

Πµν
2 (q) = 4ie2

∫

ddl

(2π)d

(

lµlν + lνlµ − 2(1− x)xqνqµ − ηµν(l2 − x(1− x)q2 −m2
e)
)

×
∫ 1

0
dx

1
[

l2 −∆+ iǫ
]2 . (185)

By rotational invariance in d dimensions we can replace lµlν by l2ηµν/d. Thus we get

Πµν
2 (q) = 4ie2

∫ 1

0
dx
[

(
2

d
− 1)ηµν

∫

ddl

(2π)d
l2

(l2 −∆+ iǫ)2

− (2(1− x)xqµqν − ηµν(x(1− x)q2 +m2
e))

∫

ddl

(2π)d
1

(l2 −∆+ iǫ)2

]

.

(186)

Next we Wick rotate (ddl = iddlE and l2 = −l2E) to obtain

Πµν
2 (q) = −4e2

∫ 1

0
dx
[

(−2

d
+ 1)ηµν

∫ ddlE
(2π)d

l2E
(l2E +∆)2

− (2(1− x)xqµqν − ηµν(x(1 − x)q2 +m2
e))

∫ ddlE
(2π)d

1

(l2E +∆)2

]

.

(187)
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We need to compute two d−dimensional integrals. These are

∫ ddlE
(2π)d

l2E
(l2E +∆)2

=
1

(2π)d

∫

dΩd

∫

rd−1dr
r2

(r2 +∆)2

=
1

(2π)d
1

2

∫

dΩd

∫

(r2)
d
2dr2

1

(r2 +∆)2

=
1

(2π)d
1

2

1

∆1− d
2

∫

dΩd

∫ 1

0
dx x−

d
2 (1− x)

d
2 . (188)

∫

ddlE
(2π)d

1

(l2E +∆)2
=

1

(2π)d

∫

dΩd

∫

rd−1dr
1

(r2 +∆)2

=
1

(2π)d
1

2

∫

dΩd

∫

(r2)
d−2

2 dr2
1

(r2 +∆)2

=
1

(2π)d
1

2

1

∆2− d
2

∫

dΩd

∫ 1

0
dx x1−

d
2 (1− x)

d
2
−1. (189)

In the above two equations we have used the change of variable x = ∆/(r2 +∆) and dx/∆ =

−dr2/(r2 +∆)2. We can also use the definition of the so-called beta function

B(α, β) =
∫ 1

0
dx xα−1(1− x)β−1 =

Γ(α)Γ(β)

Γ(α + β)
. (190)

Also we can use the area of a d−dimensional unit sphere given by

∫

dΩd =
2π

d
2

Γ(d
2
)
. (191)

We get then

∫ ddlE
(2π)d

l2E
(l2E +∆)2

=
1

(4π)
d
2

1

∆1− d
2

Γ(2− d
2
)

2
d
− 1

. (192)

∫

ddlE
(2π)d

1

(l2E +∆)2
=

1

(4π)
d
2

1

∆2− d
2

Γ(2− d

2
). (193)

With these results the loop integral Πµν
2 (q) becomes

Πµν
2 (q) = −4e2

Γ(2− d
2
)

(4π)
d
2

∫ 1

0
dx

1

∆2− d
2

[

−∆ηµν − (2(1− x)xqµqν − ηµν(x(1− x)q2 +m2
e))
]

= −4e2
Γ(2− d

2
)

(4π)
d
2

∫ 1

0
dx

2x(1− x)

∆2− d
2

(q2ηµν − qµqν). (194)

Therefore we conclude that the Ward-Takahashi identity is indeed maintained in dimensional

regularization. The function Π2(q
2) is then given by

Π2(q
2) = −4e2

Γ(2− d
2
)

(4π)
d
2

∫ 1

0
dx

2x(1− x)

∆2− d
2

. (195)
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We want now to take the limit d −→ 4. We define the small parameter ǫ = 4− d. We use the

expansion of the gamma function near its pole z = 0 given by

Γ(2− d

2
) = Γ(

ǫ

2
) =

2

ǫ
− γ +O(ǫ). (196)

The number γ is given by γ = 0.5772 and is called the Euler-Mascheroni constant. It is not

difficult to convince ourselves that the 1/ǫ divergence in dimensional regularization corresponds

to the logarithmic divergence ln Λ2 in Pauli-Villars regularization.

Thus near d = 4 (equivalently ǫ = 0) we get

Π2(q
2) = − 4e2

(4π)2
(
2

ǫ
− γ +O(ǫ))

∫ 1

0
dx 2x(1− x)(1 − ǫ

2
ln∆ +O(ǫ2))

= −2α

π

∫ 1

0
dx x(1− x)(

2

ǫ
− ln∆− γ +O(ǫ))

= −2α

π

∫ 1

0
dx x(1− x)(

2

ǫ
− ln(m2

e − x(1− x)q2)− γ +O(ǫ)). (197)

We will also need

Π2(0) = −2α

π

∫ 1

0
dx x(1− x)(

2

ǫ
− ln(m2

e)− γ +O(ǫ)). (198)

Thus

Π2(q
2)− Π2(0) = −2α

π

∫ 1

0
dx x(1− x)(ln

m2
e

m2
e − x(1− x)q2

+O(ǫ)). (199)

This is finite in the limit ǫ −→ 0. At very high energies (small distances) corresponding to

−q2 >> m2
e we get

Π2(q
2)− Π2(0) = −2α

π

∫ 1

0
dx x(1− x)(− ln(1 + x(1 − x)

−q2
m2

e

) +O(ǫ))

=
α

3π

[

ln
−q2
m2

e

− 5

3
+O(

m2
e

−q2 )
]

=
αR

3π

[

ln
−q2
m2

e

− 5

3
+O(

m2
e

−q2 )
]

. (200)

At one-loop order the effective electric charge is

e2eff =
e2R

1− αR

3π
[ ln −q2

m2
e
− 5

3
+O( m2

e

−q2
)]
. (201)

The electromagnetic coupling constant depends therefore on the energy as follows

αeff(
−q2
m2

e

) =
αR

1− αR

3π
[ ln −q2

m2
e
− 5

3
+O( m2

e

−q2
)]

(202)

The effective electromagnetic coupling constant becomes large at high energies. We say that

the electromagnetic coupling constant runs with energy or equivalently with distance.
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1.8 Renormalization of QED

In this last section we will summarize all our results. The starting Lagrangian was

L = −1

4
FµνF

µν + ψ̄(iγµ∂µ −m)ψ − eψ̄γµψA
µ. (203)

We know that the electron and photon two-point functions behave as

∫

d4xeip(x−y) < Ω|T (ψ̂(x)¯̂ψ(y))|Ω >=
iZ2

γ.p−mr + iǫ
+ ... (204)

∫

d4xeiq(x−y) < Ω|T (Âµ(x)Âν(y))|Ω > =
−iηµνZ3

q2 + iǫ
+ .... (205)

Let us absorb the field strength renormalization constants Z2 and Z3 in the fields as follows

ψ̂r = ψ̂/
√

Z2 , Â
µ
r = Âµ/

√

Z3. (206)

The QED Lagrangian becomes

L = −Z3

4
FrµνF

µν
r + Z2ψ̄r(iγ

µ∂µ −m)ψr − eZ2

√

Z3ψ̄rγµψrA
µ
r . (207)

The renormalized electric charge is defined by

eZ2

√

Z3 = eRZ1. (208)

This reduces to the previous definition eR = e
√
Z3 by using Ward identity in the form

Z1 = Z2. (209)

We introduce the counter-terms

Z1 = 1 + δ1 , Z2 = 1 + δ2 , Z3 = 1 + δ3. (210)

We also introduce the renormalized mass mr and the counter-term δm by

Z2m = mr + δm. (211)

We have

L = −1

4
FrµνF

µν
r + ψ̄r(iγ

µ∂µ −mr)ψr − eRψ̄rγµψrA
µ
r

− δ3
4
FrµνF

µν
r + ψ̄r(iδ2γ

µ∂µ − δm)ψr − eRδ1ψ̄rγµψrA
µ
r . (212)

By dropping total derivative terms we find

L = −1

4
FrµνF

µν
r + ψ̄r(iγ

µ∂µ −mr)ψr − eRψ̄rγµψrA
µ
r

− δ3
2
Arµ(−∂.∂ ηµν + ∂µ∂ν)Arν + ψ̄r(iδ2γ

µ∂µ − δm)ψr − eRδ1ψ̄rγµψrA
µ
r . (213)
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There are three extra Feynman diagrams associated with the counter-terms δ1, δ2, δ3 and δm
besides the usual three Feynman diagrams associated with the photon and electron propaga-

tors and the QED vertex. The Feynman diagrams of renormalized QED are shown on figure

RENQED.

The counter-terms will be determined from renormalization conditions. There are four

counter-terms and thus one must have 4 renormalization conditions. The first two renormal-

ization conditions correspond to the fact that the electron and photon field-strength renormal-

ization constants are equal 1. Indeed we have by construction

∫

d4xeip(x−y) < Ω|T (ψ̂r(x)
¯̂
ψr(y))|Ω >=

i

γ.p−mr + iǫ
+ ... (214)

∫

d4xeiq(x−y) < Ω|T (Âµ
r (x)Â

ν
r (y))|Ω > =

−iηµν
q2 + iǫ

+ .... (215)

Let us recall that the one-particle irreducible (1PI) diagrams with 2 photon lines is iΠµν(q) =

i(ηµνq2 − qµqν)Π(q2). We know that the residue of the photon propagator at q2 = 0 is 1/(1 −
Π(0)). Thus the first renormalization constant is

Π(q2 = 0) = 1. (216)

The one-particle irreducible (1PI) diagrams with 2 electron lines is −iΣ(γ.p). The residue

of the electron propagator at γ.p = mr is 1/(1 − (dΣ(γ.p)/dγ.p)|γ.p=mr
). Thus the second

renormalization constant is

dΣ(γ.p)

γ.p
|γ.p=mr

= 0. (217)

Clearly the renormalized mass mr must be defined by setting the self-energy −iΣ(γ.p) at γ.p =
mr to zero so it is not shifted by quantum effects in renormalized QED. In other words we must

have the renormalization constant

Σ(γ.p = mr) = 0. (218)

Lastly the renormalized electric charge eR must also not be shifted by quantum effects in

renormalized QED. The quantum correction to the electric charge is contained in the exact

vertex function (the QED proper vertex) −ieΓµ(p
′

, p). Thus we must impose

Γµ(p
′ − p = 0) = γµ. (219)
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1.9 Problems and Exercises

Mott Formula and Bhabha Scattering:

• Use Feynman rules to write down the tree level probability amplitude for electron-muon

scattering.

• Derive the unpolarized cross section of the electron-muon scattering at tree level in the

limit mµ −→ ∞. The result is known as Mott formula.

• Repeat the above two questions for electron-electron scattering. This is known as Bhabha

scattering.

Scattering from an External Electromagnetic Field: Compute the Feynman diagrams

corresponding to the three first terms of equation (21).

Spinor Technology:

• Prove Gordon’s identity (with q = p− p
′

)

ūs
′

(p
′

)γµus(p) =
1

2me

ūs
′

(p
′

)
[

(p+ p
′

)µ − iσµνqν

]

us(p). (220)

• Show that we can make the replacement

ūs
′

(p
′

)
[

(xγ.p+ yγ.q)γµ(xγ.p + (y − 1)γ.q)
]

us(p) −→ ūs
′

(p
′

)
[

me(x+ y)(x+ y − 1)(2pµ −meγ
µ)

− (x+ y)(y − 1)
(

2me(p+ p
′

)µ + q2γµ − 3m2
e

× γµ
)

−m2
ey(x+ y − 1)γµ +mey(y − 1)

× (2p
′µ −meγ

µ)
]

us(p). (221)

Spheres in d Dimensions: Show that the area of a d−dimensional unit sphere is given by

∫

dΩd =
2π

d
2

Γ(d
2
)
. (222)

Renormalization Constant Z2: Show that the probability for the spinor field to create or

annihilate a particle is precisely Z2.

Ward Identity: Consider a QED process which involves a single external photon with mo-

mentum k and polarization ǫµ. The probability amplitude of this process is of the form

iMµ(k)ǫµ(k). Show that current conservation leads to the Ward identity kµMµ(k) = 0.

Hint: See Peskin and Schroeder.
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Pauli-Villars Regulator Fields: Show that Pauli-Villars regularization is equivalent to

the introduction of regulator fields with large masses. The number of regulator fields can be

anything.

Hint: See Zinn-Justin.

Pauli-Villars Regularization:

• Use Pauli-Villars Regularization to compute Πµν
2 (q2).

• Show that the 1/ǫ divergence in dimensional regularization corresponds to the logarithmic

divergence ln Λ2 in Pauli-Villars regularization. Compare for example the value of the

integral (193) in both schemes.

Uehling Potential and Lamb Shift:

• Show that the electrostatic potential can be given by the integral

V (~x) =
∫ d3~q

(2π)3
−e2ei~q~x
~q2

. (223)

• Compute the one-loop correction to the above potential due to the vacuum polarization.

• By approximating the Uehling potential by a delta function determine the Lamb shift of

the levels of the Hydrogen atom.

Hard Cutoff Regulator:

• Use a naive cutoff to evaluate Πµν
2 (q2). What do you conclude.

• Show that a naive cutoff will not preserve the Ward-Takahashi identity Z1 = Z2.

Dimensional Regularization and QED Counter-terms:

• Reevaluate the electron self-energy −iΣ(γ.p) at one-loop in dimensional regularization.

• Compute the counter-terms δm and δ2 at one-loop.

• Use the expression of the photon self-energy iΠµν at one-loop computed in the lecture in

dimensional regularization to evaluate the counter term δ3.

• Reevaluate the vertex function −ieΓµ(p
′

, p) at one-loop in dimensional regularization.

• Compute the counter-term δ1 at one-loop.

• Show explicitly that dimensional regularization will preserve the Ward-Takahashi identity

Z1 = Z2.
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