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1 The Electromagnetic Field

1.1 Covariant Formulation of Classical Electrodynamics

The Field Tensor The electric and magnetic fields ~E and ~B generated by a charge density ρ

and a current density ~J are given by the Maxwell’s equations written in the Heaviside-Lorentz

system as

~∇ ~E = ρ , Gauss′ s Law. (1)

~∇ ~B = 0 , No−Magnetic Monopole Law. (2)

~∇× ~E = −
1

c

∂ ~B

∂t
, Faraday′ s Law. (3)

~∇× ~B =
1

c
( ~J +

∂ ~E

∂t
) , Ampere−Maxwell′ s Law. (4)

The Lorentz force law expresses the force exerted on a charge q moving with a velocity ~u in the

presence of an electric and magnetic fields ~E and ~B. This is given by

~F = q( ~E +
1

c
~u× ~B). (5)

The continuity equation expresses local conservation of the electric charge. It reads

∂ρ

∂t
+ ~∇ ~J = 0. (6)

We consider now the following Lorentz transformation

x
′

= γ(x− vt)

y
′

= y

z
′

= z

t
′

= γ(t−
v

c2
x). (7)

In other words (with x0 = ct, x1 = x, x2 = y, x3 = z and signature (+−−−))

xµ
′

= Λµ
νx

ν , Λ =













γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1













. (8)
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The transformation laws of the electric and magnetic fields ~E and ~B under this Lorentz trans-

formation are given by

E
′

x = Ex , E
′

y = γ(Ey −
v

c
Bz) , E

′

z = γ(Ez +
v

c
By)

B
′

x = Bx , B
′

y = γ(By +
v

c
Ez) , B

′

z = γ(Bz −
v

c
Ey). (9)

Clearly ~E and ~B do not transform like the spatial part of a 4−vector. In fact ~E and ~B are

the components of a second-rank antisymmetric tensor. Let us recall that a second-rank tensor

F µν is an abject carrying two indices which transforms under a Lorentz transformation Λ as

F µν′ = Λµ
λΛ

ν
σF

λσ. (10)

This has 16 components. An antisymmetric tensor will satisfy the extra condition Fµν = −Fµν

so the number of independent components is reduced to 6. Explicitly we write

F µν =













0 F 01 F 02 F 03

−F 01 0 F 12 F 13

−F 02 −F 12 0 F 23

−F 03 −F 13 −F 23 0













. (11)

The transformation laws (10) can then be rewritten as

F 01′ = F 01 , F 02′ = γ(F 02 − βF 12) , F 03′ = γ(F 03 + βF 31)

F 23′ = F 23 , F 31′ = γ(F 31 + βF 03) , F 12′ = γ(F 12 − βF 02). (12)

By comparing (9) and (12) we obtain

F 01 = −Ex , F
02 = −Ey , F

03 = −Ez , F
12 = −Bz , F

31 = −By , F
23 = −Bx. (13)

Thus

F µν =













0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0













. (14)

Let us remark that (9) remains unchanged under the duality transformation

~E −→ ~B , ~B −→ −~E. (15)

The tensor (14) changes under the above duality transformation to the tensor

F̃ µν =













0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0













. (16)
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It is not difficult to show that

F̃ µν =
1

2
ǫµναβF αβ. (17)

The 4−dimensional Levi-Civita antisymmetric tensor ǫµναβ is defined in an obvious way.

The second-rank antisymmetric tensor F̃ is called the field tensor while the second-rank

antisymmetric tensor F̃ is called the dual field tensor.

Covariant Formulation The proper charge density ρ0 is the charge density measured in

the inertial reference frame O
′

where the charge is at rest. This is given by ρ0 = Q/V0 where

V0 is the proper volume. Because the dimension along the direction of the motion is Lorentz

contracted the volume V measured in the reference frame O is given by V =
√

1− u2/c2V0.

Thus the charge density measured in O is

ρ =
Q

V
=

ρ0
√

1− u2

c2

. (18)

The current density ~J measured in O is proportional to the velocity ~u and to the current density

ρ, viz

~J = ρ~u =
ρ0~u

√

1− u2

c2

. (19)

The 4−vector velocity ηµ is defined by

ηµ =
1

√

1− u2

c2

(c, ~u). (20)

Hence we can define the current density 4−vector Jµ by

Jµ = ρ0η
µ = (cρ, Jx, Jy, Jz). (21)

The continuity equation ~∇ ~J = −∂ρ/∂t which expresses charge conservation will take the form

∂µJ
µ = 0. (22)

In terms of Fµν and F̃µν Maxwell’s equations will take the form

∂µF
µν =

1

c
Jν , ∂µF̃

µν = 0. (23)

The first equation yields Gauss’s and Ampere-Maxwell’s laws whereas the second equation

yields Maxwell’s third equation ~∇ ~B = 0 and Faraday’s law.

It remains to write down a covariant Lorentz force. We start with the 4−vector proper force

given by

Kµ =
q

c
ηνF

µν . (24)
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This is called the Minkowski force. The spatial part of this force is

~K =
q

√

1− u2

c2

( ~E +
1

c
~u× ~B). (25)

We have also

Kµ =
dpµ

dτ
. (26)

In other words

~K =
d~p

dτ
=
dt

dτ
~F =

1
√

1− u2

c2

~F . (27)

This leads precisely to the Lorentz force law

~F = q( ~E +
1

c
~u× ~B). (28)

1.2 Gauge Potentials and Gauge Transformations

The electric and magnetic fields ~E and ~B can be expressed in terms of a scalar potential V

and a vector potential ~A as

~B = ~∇× ~A. (29)

~E = −
1

c
(~∇V +

∂ ~A

∂t
). (30)

We construct the 4−vector potential Aµ as

Aµ = (V/c, ~A). (31)

The field tensor Fµν can be rewritten in terms of Aµ as

Fµν = ∂µAν − ∂νAµ. (32)

This equation is actually equivalent to the two equations (29) and (30). The homogeneous

Maxwell’s equation ∂µF̃
µν = 0 is automatically solved by this ansatz. The inhomogeneous

Maxwell’s equation ∂µF
µν = Jν/c becomes

∂µ∂
µAν − ∂ν∂µA

µ =
1

c
Jν . (33)

We have a gauge freedom in choosing Aµ given by local gauge transformations of the form (with

λ any scalar function)

Aµ −→ A
′µ = Aµ + ∂µλ. (34)
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Indeed under this transformation we have

F µν −→ F
′µν = F µν . (35)

These local gauge transformations form a (gauge) group. In this case the group is just the

abelian U(1) unitary group. The invariance of the theory under these transformations is termed

a gauge invariance. The 4−vector potential Aµ is called a gauge potential or a gauge field. We

make use of the invariance under gauge transformations by working with a gauge potential Aµ

which satisfies some extra conditions. This procedure is known as gauge fixing. Some of the

gauge conditions so often used are

∂µA
µ = 0 , Lorentz Gauge. (36)

∂iA
i = 0 , Coulomb Gauge. (37)

A0 = 0 , Temporal Gauge. (38)

A3 = 0 , Axial Gauge. (39)

In the Lorentz gauge the equations of motion (33) become

∂µ∂
µAν =

1

c
Jν . (40)

Clearly we still have a gauge freedom Aµ −→ A
′µ = Aµ+∂µφ where ∂µ∂

µφ = 0. In other words if

Aµ satisfies the Lorentz gauge ∂µA
µ = 0 then A

′µ will also satisfy the Lorentz gauge, i.e. ∂µA
′µ =

0 iff ∂µ∂
µφ = 0. This residual gauge symmetry can be fixed by imposing another condition such

as the temporal gauge A0 = 0. We have therefore 2 constraints imposed on the components of

the gauge potential Aµ which means that only two of them are really independent.

1.3 Maxwell’s Lagrangian Density

The equations of motion of the gauge field Aµ is

∂µ∂
µAν − ∂ν∂µA

µ =
1

c
Jν . (41)

These equations of motion should be derived from a local Lagrangian density L, i.e. a La-

grangian which depends only on the fields and their first derivatives at the point ~x. We have

then

L = L(Aµ, ∂νAµ). (42)

The Lagrangian is the integral over ~x of the Lagrangian density, viz

L =
∫

d~xL. (43)
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The action is the integral over time of L, namely

S =
∫

dtL =
∫

d4xL. (44)

We compute

δS =
∫

d4xδL

=
∫

d4x
[

δAν

δL

δAν

− δAν∂µ
δL

δ∂µAν

+ ∂µ

(

δAν

δL

δ∂µAν

)]

. (45)

The surface term is zero because the field Aν at infinity is assumed to be zero and thus

δAν = 0 , xµ −→ ±∞. (46)

We get

δS =
∫

d4xδAν

[

δL

δAν

− ∂µ
δL

δ∂µAν

]

. (47)

The principle of least action δS = 0 yields therefore the Euler-Lagrange equations

δL

δAν

− ∂µ
δL

δ∂µAν

= 0. (48)

Firstly the Lagrangian density L is a Lorentz scalar. Secondly the equations of motion (41) are

linear in the field Aµ and hence the Lagrangian density L can at most be quadratic in Aµ. The

most general form of L which is quadratic in Aµ is

LMaxwell = α(∂µA
µ)2 + β(∂µA

ν)(∂µAν) + γ(∂µA
ν)(∂νA

µ) + δAµA
µ + ǫJµA

µ. (49)

We calculate

δLMaxwell

δAρ

= 2δAρ + ǫJρ. (50)

δLMaxwell

δ∂σAρ

= 2αησρ∂µA
µ + 2β∂σAρ + 2γ∂ρAσ. (51)

Thus

δLMaxwell

δAρ

− ∂σ
δLMaxwell

δ∂σAρ

= 0 ⇔ 2β∂σ∂
σAρ + 2(α + γ)∂ρ∂σA

σ − 2δAρ = ǫJρ. (52)

By comparing with the equations of motion (41) we obtain immediately (with ζ an arbitrary

parameter)
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2β = −ζ , 2(α+ γ) = ζ , δ = 0 , ǫ = −
1

c
ζ. (53)

We get the Lagrangian density

LMaxwell = α
(

(∂µA
µ)2 − ∂µAν∂

νAµ

)

−
ζ

2

(

∂µAν∂
µAν − ∂µAν∂

νAµ

)

−
1

c
ζJµA

µ

= α∂µ

(

Aµ∂νA
ν − Aν∂νA

µ

)

−
ζ

4
FµνF

µν −
1

c
ζJµA

µ. (54)

The first term is a total derivative which vanishes since the field Aν vanishes at infinity. Thus

we end up with the Lagrangian density

LMaxwell = −
ζ

4
FµνF

µν −
1

c
ζJµA

µ. (55)

In order to get a correctly normalized Hamiltonian density from this Lagrangian density we

choose ζ = 1. We get finally the result

LMaxwell = −
1

4
FµνF

µν −
1

c
JµA

µ. (56)

1.4 Polarization Vectors

In this section we will consider a free electromagnetic gauge field Aµ, i.e. we take Jµ = 0.

In the Feynman gauge (see next section for detail) the equations of motion of the gauge field

Aµ read

∂µ∂
µAν = 0. (57)

These are 4 massless Klein-Gordon equations. The solutions are plane-waves of the form

Aµ = e±
i

h̄
pxǫµλ(~p). (58)

The 4−momentum pµ is such that

pµp
µ = 0. (59)

There are 4 independent polarization vectors ǫµλ(~p). The polarization vectors for λ = 1, 2 are

termed transverse , the polarization vector for λ = 3 is termed longitudinal and the polarization

vector for λ = 0 is termed scalar.

In the case of the Lorentz condition ∂µA
µ = 0 the polarization vectors ǫµλ(~p) are found to

satisfy pµǫ
µ
λ(~p) = 0. By imposing also the temporal gauge condition A0 = 0 we get ǫ0λ(~p) = 0

and the Lorentz condition becomes the Coulomb gauge ~p.~ǫλ(~p) = 0.

Motivated by this we choose the polarization vectors ǫµλ(~p) as follows. We pick a fixed

Lorentz frame in which the time axis is along some timelike unit 4−vector nµ, viz

nµn
µ = 1 , n0 > 0. (60)
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The transverse polarization vectors will be chosen in the plane orthogonal to nµ and to the

4−momentum pµ. The second requirement is equivalent to the Lorentz condition:

pµǫ
µ
λ(~p) = 0 , λ = 1, 2. (61)

The first requirement means that

nµǫ
µ
λ(~p) = 0 , λ = 1, 2. (62)

The transverse polarization vectors will furthermore be chosen to be spacelike (which is equiv-

alent to the temporal gauge condition) and orthonormal, i.e.

ǫµ1 (~p) = (0,~ǫ1(~p)) , ǫ
µ
2 (~p) = (0,~ǫ2(~p)), (63)

and

~ǫi(~p).~ǫj(~p) = δij . (64)

The longitudinal polarization vector is chosen in the plane (nµ, pµ) orthogonal to nµ. More

precisely we choose

ǫµ3 (~p) =
pµ − (np)nµ

np
. (65)

For nµ = (1, 0, 0, 0) we get ǫµ3 (~p) = (0, ~p/|~p|). This longitudinal polarization vector satisfies

ǫµ3 (~p)ǫ3µ(~p) = −1 , ǫµ3 (~p)nµ = 0 , ǫµ3 (~p)ǫλµ(~p) = 0 , λ = 1, 2. (66)

Let us also remark

pµǫ
µ
3 (~p) = −nµpµ. (67)

Indeed for a massless vector field it is impossible to choose a third polarization vector which

is transevrse. A massless particle can only have two polarization states regardless of its spin

whereas a massive particle with spin j can have 2j + 1 polarization states.

The scalar polarization vector is chosen to be nµ itself, namely

ǫµ0 (~p) = nµ. (68)

In summary the polarization vectors ǫµλ(~p) are chosen such that they satisfy the orthonormal-

ization condition

ǫµλ(~p)ǫλ′
µ(~p) = ηλλ′ . (69)

They also satisfy

pµǫ
µ
1 (~p) = pµǫ

µ
2 (~p) = 0 , −pµǫ

µ
3 (~p) = pµǫ

µ
0 (~p) = nµpµ. (70)
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By choosing nµ = (1, 0, 0, 0) and ~p = (0, 0, p) we obtain ǫµ0 (~p) = (1, 0, 0, 0), ǫµ1 (~p) = (0, 1, 0, 0),

ǫµ2 (~p) = (0, 0, 1, 0) and ǫµ3 (~p) = (0, 0, 0, 1).

We compute in the reference frame in which nµ = (1, 0, 0, 0) the completeness relations

3
∑

λ=0

ηλλǫ
0
λ(~p)ǫ

0
λ(~p) = ǫ00(~p)ǫ

0
0(~p) = 1. (71)

3
∑

λ=0

ηλλǫ
0
λ(~p)ǫ

i
λ(~p) = ǫ00(~p)ǫ

i
0(~p) = 0. (72)

3
∑

λ=0

ηλλǫ
i
λ(~p)ǫ

j
λ(~p) = −

3
∑

λ=1

ǫiλ(~p)ǫ
j
λ(~p). (73)

The completeness relation for a 3−dimensional orthogonal dreibein is

3
∑

λ=1

ǫiλ(~p)ǫ
j
λ(~p) = δij. (74)

This can be checked for example by going to the reference frame in which ~p = (0, 0, p). Hence

we get

3
∑

λ=0

ηλλǫ
i
λ(~p)ǫ

j
λ(~p) = ηij. (75)

In summary we get the completeness relations

3
∑

λ=0

ηλλǫ
µ
λ(~p)ǫ

ν
λ(~p) = ηµν . (76)

From this equation we derive that the sum over the transverse polarization states is given by

2
∑

λ=1

ǫµλ(~p)ǫ
ν
λ(~p) = −ηµν −

pµpν

(np)2
+
pµnν + pνnµ

np
. (77)

1.5 Quantization of The Electromagnetic Gauge Field

We start with the Lagrangian density

LMaxwell = −
1

4
FµνF

µν −
1

c
JµA

µ. (78)

The field tensor is defined by Fµν = ∂µAν − ∂νAµ. The equations of motion of the gauge field

Aµ derived from the Lagrangian density LMaxwell are given by

∂µ∂
µAν − ∂ν∂µA

µ =
1

c
Jν . (79)
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There is a freedom in the definition of the gauge field Aµ given by the gauge transformations

Aµ −→ A
′µ = Aµ + ∂µλ. (80)

The form of the equations of motion (79) strongly suggest the Lorentz condition

∂µAµ = 0. (81)

We incorporate this constraint via a Lagrange multiplier ζ in order to obtain a gauge-fixed

Lagrangian density, viz

Lgauge−fixed = −
1

4
FµνF

µν −
1

2
ζ(∂µAµ)

2 −
1

c
JµA

µ. (82)

The added extra term is known as a gauge-fixing term. This modification was proposed first

by Fermi. The equations of motion derived from this Lagrangian density are

∂µ∂
µAν − (1− ζ)∂ν∂µA

µ =
1

c
Jν . (83)

These are equivalent to Maxwell’s equations in the Lorentz gauge. To see this we remark first

that

∂ν

(

∂µ∂
µAν − (1− ζ)∂ν∂µA

µ

)

=
1

c
∂νJ

ν . (84)

Gauge invariance requires current conservation, i.e. we must have ∂νJ
ν = 0. Thus we obtain

∂µ∂
µφ = 0 , φ = ∂µA

µ. (85)

This is a Cauchy initial-value problem for ∂µA
µ. In other words if ∂µA

µ = 0 and ∂0(∂µA
µ) = 0

at an initial time t = t0 then ∂µA
µ = 0 at all times. Hence (83) are equivalent to Maxwell’s

equations in the Lorentz gauge.

We will work in the so-called Feynman gauge which corresponds to ζ = 1 and for simplicity

we will set Jµ = 0. The equations of motion become the massless Klein-Gordon equations

∂µ∂
µAν = 0. (86)

These can be derived from the Lagrangian density

L = −
1

2
∂µAν∂

µAν . (87)

This Lagrangian density is equal to the gauge-fixed Lagrangian density Lgauge−fixed modulo a

total derivative term, viz

Lgauge−fixed = L+ total derivative term. (88)

The conjugate momentum field is defined by
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πµ =
δL

δ∂tAµ

= −
1

c2
∂tAµ. (89)

The Hamiltonian density is then given by

H = πµ∂tA
µ − L

=
1

2
∂iAµ∂

iAµ −
1

2
∂0Aµ∂

0Aµ

=
1

2
(∂0 ~A)

2 +
1

2
(~∇ ~A)2 −

1

2
(∂0A

0)2 −
1

2
(~∇A0)2. (90)

The contribution of the zero-component A0 of the gauge field is negative. Thus the Hamiltonian

density is not positive definite as it should be. This is potentially a severe problem which will

be solved by means of the gauge condition.

We have already found that there are 4 independent polarization vectors ǫµλ(~p) for each

momentm ~p. The 4−momentum pµ satisfies pµpµ = 0, i.e. (p0)2 = ~p2. We define ω(~p) = c
h̄
p0 =

c
h̄
|~p|. The most general solution of the classical equations of motion in the Lorentz gauge can

be put in the form

Aµ = c
∫

d3~p

(2πh̄)3
1

√

2ω(~p)

3
∑

λ=0

(

e−
i

h̄
pxǫµλ(~p)a(~p, λ) + e

i

h̄
pxǫµλ(~p)a(~p, λ)

∗
)

p0=|~p|
. (91)

We compute

1

2

∫

∂iA
µ∂iAµ = −c2

∫

d3~p

(2πh̄)3
1

4ω(~p)

pipi

h̄2

3
∑

λ,λ
′
=0

ǫµλ(~p)ǫλ′
µ(~p)

(

a(~p, λ)a(~p, λ
′

)∗ + a(~p, λ)∗a(~p, λ
′

)
)

− c2
∫

d3~p

(2πh̄)3
1

4ω(~p)

pipi

h̄2

3
∑

λ,λ
′=0

ǫµλ(~p)ǫλ′
µ(−~p)

(

e−
2i

h̄
p0x0

a(~p, λ)a(−~p, λ
′

)

+ e+
2i

h̄
p0x0

a(~p, λ)∗a(−~p, λ
′

)∗
)

. (92)

1

2

∫

∂0A
µ∂0Aµ = c2

∫

d3~p

(2πh̄)3
1

4ω(~p)

p0p0

h̄2

3
∑

λ,λ
′=0

ǫµλ(~p)ǫλ′
µ(~p)

(

a(~p, λ)a(~p, λ
′

)∗ + a(~p, λ)∗a(~p, λ
′

)
)

− c2
∫

d3~p

(2πh̄)3
1

4ω(~p)

p0p0

h̄2

3
∑

λ,λ
′
=0

ǫµλ(~p)ǫλ′
µ(−~p)

(

e−
2i

h̄
p0x0

a(~p, λ)a(−~p, λ
′

)

+ e+
2i

h̄
p0x0

a(~p, λ)∗a(−~p, λ
′

)∗
)

. (93)

The Hamiltonian becomes (since p0p0 = pipi)
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H =
∫

d3x
(

1

2
∂iAµ∂

iAµ −
1

2
∂0Aµ∂

0Aµ

)

= −c2
∫

d3~p

(2πh̄)3
1

2ω(~p)

p0p0

h̄2

3
∑

λ,λ
′=0

ǫµλ(~p)ǫλ′
µ(~p)

(

a(~p, λ)a(~p, λ
′

)∗ + a(~p, λ)∗a(~p, λ
′

)
)

= −
∫

d3~p

(2πh̄)3
ω(~p)

2

3
∑

λ,λ
′=0

ǫµλ(~p)ǫλ′
µ(~p)

(

a(~p, λ)a(~p, λ
′

)∗ + a(~p, λ)∗a(~p, λ
′

)
)

= −
∫

d3~p

(2πh̄)3
ω(~p)

2

3
∑

λ=0

ηλλ

(

a(~p, λ)a(~p, λ)∗ + a(~p, λ)∗a(~p, λ)
)

. (94)

In the quantum theory Aµ becomes the operator

Âµ = c
∫

d3~p

(2πh̄)3
1

√

2ω(~p)

3
∑

λ=0

(

e−
i

h̄
pxǫµλ(~p)â(~p, λ) + e

i

h̄
pxǫµλ(~p)â(~p, λ)

+
)

p0=|~p|
. (95)

The conjugate momentum πµ becomes the operator

π̂µ = −
1

c2
∂tÂ

µ

=
∫

d3~p

(2πh̄)3
i

c

√

ω(~p)

2

3
∑

λ=0

(

e−
i

h̄
pxǫµλ(~p)â(~p, λ)− e

i

h̄
pxǫµλ(~p)â(~p, λ)

+
)

p0=|~p|
. (96)

We impose the equal-time canonical commutation relations

[Âµ(x0, ~x), π̂ν(x0, ~y)] = ih̄ηµνδ3(~x− ~y). (97)

[Âµ(x0, ~x), Âν(x0, ~y)] = [π̂µ(x0, ~x), π̂ν(x0, ~y)] = 0. (98)

The operators â+ and â are expected to be precisely the creation and annihilation operators.

In other words we expect that

[â(~p, λ), â(~q, λ
′

)] = [â(~p, λ)+, â(~q, λ
′

)+] = 0. (99)

We compute then

[Âµ(x0, ~x), π̂ν(x0, ~y)] = −i
∫

d3~p

(2πh̄)3

∫

d3~q

(2πh̄)3
1

√

2ω(~p)

√

ω(~q)

2

3
∑

λ,λ
′
=0

ǫµλ(~p)ǫ
ν
λ
′ (~q)

(

e−
i

h̄
pxe+

i

h̄
qy[â(~p, λ), â(~q, λ

′

)+] + e+
i

h̄
pxe−

i

h̄
qy[â(~q, λ

′

), â(~p, λ)+]
)

.

(100)

We can immediately conclude that we must have

[â(~p, λ), â(~q, λ
′

)+] = −ηλλ′ h̄(2πh̄)3δ3(~p− ~q). (101)
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By using (99) and (101) we can also verify the equal-time canonical commutation relations (98).

The minus sign in (101) causes serious problems. For transverse (i = 1, 2) and longitudinal

(i = 3) polarizations the number operator is given as usual by â(~p, i)+â(~p, i). Indeed we compute

[â(~p, i)+â(~p, i), â(~q, i)] = −h̄(2πh̄)3δ3(~p− ~q)â(~q, i)

[â(~p, i)+â(~p, i), â(~q, i)+] = h̄(2πh̄)3δ3(~p− ~q)â(~q, i)+. (102)

In the case of the scalar polarization (λ = 0) the number operator is given by −â(~p, 0)+â(~p, 0)

since

[−â(~p, 0)+â(~p, 0), â(~q, 0)] = −h̄(2πh̄)3δ3(~p− ~q)â(~q, 0)

[−â(~p, 0)+â(~p, 0), â(~q, 0)+] = h̄(2πh̄)3δ3(~p− ~q)â(~q, 0)+. (103)

In the quantum theory the Hamiltonian becomes the operator

Ĥ = −
∫ d3~p

(2πh̄)3
ω(~p)

2

3
∑

λ=0

ηλλ

(

â(~p, λ)â(~p, λ)+ + â(~p, λ)+â(~p, λ)
)

. (104)

As before normal ordering yields the Hamiltonian operator

Ĥ = −
∫ d3~p

(2πh̄)3
ω(~p)

3
∑

λ=0

ηλλâ(~p, λ)
+â(~p, λ)

=
∫ d3~p

(2πh̄)3
ω(~p)

( 3
∑

i=1

â(~p, i)+â(~p, i)− â(~p, 0)+â(~p, 0)
)

. (105)

Since −â(~p, 0)+â(~p, 0) is the number operator for scalar polarization the Hamiltonian Ĥ can

only have positive eigenvalues. Let |0 > be the vacuum state, viz

â(~p, λ)|0 >= 0 , ∀~p and ∀λ. (106)

The one-particle states are defined by

|~p, λ >= â(~p, λ)+|0 > . (107)

Let us compute the expectation value

< ~p, λ|Ĥ|~p, λ > . (108)

By using Ĥ|0 >= 0 and [Ĥ, â(~p, λ)+] = h̄ω(~p)â(~p, λ)+ we find

< ~p, λ|Ĥ|~p, λ > = < ~p, λ|[Ĥ, â(~p, λ)+]|0 >

= h̄ω(~p) < ~p, λ|~p, λ > . (109)

However

< ~p, λ|~p, λ > = < 0|[â(~p, λ), â(~p, λ)+]|0 >

= −ηλλh̄(2πh̄)
3δ3(~p− ~q) < 0|0 >

= −ηλλh̄(2πh̄)
3δ3(~p− ~q). (110)
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This is negative for the scalar polarization λ = 0 which is potentially a severe problem. As a

consequence the expectation value of the Hamiltonian operator in the one-particle state with

scalar polarization is negative. The resolution of these problems lies in the Lorentz gauge fixing

condition which needs to be taken into consideration.

1.6 Gupta-Bleuler Method

In the quantum theory the Lorentz gauge fixing condition ∂µA
µ = 0 becomes the operator

equation

∂µÂ
µ = 0. (111)

Explicitly we have

∂µÂ
µ = −c

∫ d3~p

(2πh̄)3
1

√

2ω(~p)

i

h̄
pµ

3
∑

λ=0

(

e−
i

h̄
pxǫµλ(~p)â(~p, λ)− e

i

h̄
pxǫµλ(~p)â(~p, λ)

+
)

p0=|~p|
= 0. (112)

However

[∂µÂ
µ(x0, ~x), Âν(x0, ~y)] = [∂0Â

0(x0, ~x), Âν(x0, ~y)] + [∂iÂ
i(x0, ~x), Âν(x0, ~y)]

= −c[π̂0(x0, ~x), Âν(x0, ~y)] + ∂xi [Â
i(x0, ~x), Âν(x0, ~y)]

= ih̄cη0νδ3(~x− ~y). (113)

In other words in the quantum theory we can not impose the Lorentz condition as the operator

identity (111).

The problem we faced in the previous section was the fact that the Hilbert space of quantum

states has an indefinite metric, i.e. the norm was not positive-definite. As we said the solution

of this problem consists in imposing the Lorentz gauge condition but clearly this can not be

done in the operator form (111). Obviously there are physical states in the Hilbert space

associated with the photon transverse polarization states and unphysical states associated with

the longitudinal and scalar polarization states. It is therefore natural to impose the Lorentz

gauge condition only on the physical states |φ > associated with the transverse photons. We

may require for example that the expectation value < φ|∂µÂ
µ|φ > vanishes, viz

< φ|∂µÂ
µ|φ >= 0. (114)

Let us recall that the gauge field operator is given by

Âµ = c
∫

d3~p

(2πh̄)3
1

√

2ω(~p)

3
∑

λ=0

(

e−
i

h̄
pxǫµλ(~p)â(~p, λ) + e

i

h̄
pxǫµλ(~p)â(~p, λ)

+
)

p0=|~p|
. (115)

This is the sum of a positive-frequency part Âµ
+ and a negative-frequency part Âµ

−, viz

Âµ = Âµ
+ + Âµ

−. (116)
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These parts are given respectively by

Âµ
+ = c

∫ d3~p

(2πh̄)3
1

√

2ω(~p)

3
∑

λ=0

e−
i

h̄
pxǫµλ(~p)â(~p, λ). (117)

Âµ
− = c

∫

d3~p

(2πh̄)3
1

√

2ω(~p)

3
∑

λ=0

e
i

h̄
pxǫµλ(~p)â(~p, λ)

+. (118)

Instead of (114) we choose to impose the Lorentz gauge condition as the eigenvalue equation

∂µÂ
µ
+|φ >= 0. (119)

This is equivalent to

< φ|∂µÂ
µ
− = 0. (120)

The condition (119) is stronger than (114). Indeed we can check that < φ|∂µÂ
µ|φ >=<

φ|∂µÂ
µ
+|φ > + < φ|∂µÂ

µ
−|φ >= 0. In this way the physical states are defined precisely as the

eigenvectors of the operator ∂µÂ
µ
+ with eigenvalue 0. In terms of the annihilation operators

â(~p, λ) the condition (119) reads

c
∫

d3~p

(2πh̄)3
1

√

2ω(~p)

3
∑

λ=0

e−
i

h̄
px(−

i

h̄
pµǫ

µ
λ(~p))â(~p, λ)|φ >= 0. (121)

Since pµǫ
µ
i (~p) = 0, i = 1, 2 and pµǫ

µ
3 (~p) = −pµǫ

µ
0 (~p) = −nµpµ we get

c
∫

d3~p

(2πh̄)3
1

√

2ω(~p)
e−

i

h̄
px i

h̄
pµn

µ

(

â(~p, 3)− â(~p, 0)
)

|φ >= 0. (122)

We immediately conclude that

(

â(~p, 3)− â(~p, 0)
)

|φ >= 0. (123)

Hence we deduce the crucial identity

< φ|â(~p, 3)+â(~p, 3)|φ >=< φ|â(~p, 0)+â(~p, 0)|φ > . (124)

< φ|Ĥ|φ > =
∫

d3~p

(2πh̄)3
ω(~p)

( 2
∑

i=1

< φ|â(~p, i)+â(~p, i)|φ > + < φ|â(~p, 3)+â(~p, 3)|φ >

− < φ|â(~p, 0)+â(~p, 0)|φ >
)

=
∫

d3~p

(2πh̄)3
ω(~p)

2
∑

i=1

< φ|â(~p, i)+â(~p, i)|φ > . (125)
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This is always positive definite and only transverse polarization states contribute to the expec-

tation value of the Hamiltonian operator. This same thing will happen for all other physical

observables such as the momentum operator and the angular momentum operator. Let us

define

L(~p) = â(~p, 3)− â(~p, 0). (126)

We have

L(~p)|φ >= 0. (127)

It is trivial to show that

[L(~p), L(~p
′

)+] = 0. (128)

Thus

L(~p)|φc >= 0, (129)

where |φc > is also a physical state defined by

|φc >= fc(L
+)|φ > . (130)

The operator fc(L
+) can be expanded as

fc(L
+) = 1 +

∫

d3~p
′

c(~p
′

)L(~p
′

)+ +
∫

d3~p
′

∫

d3~p
′′

c(~p
′

, ~p
′′

)L(~p
′

)+L(~p
′′

)+ + ... (131)

It is also trivial to show that

[fc(L
+)+, fc′ (L

+)] = 0. (132)

The physical state |φc > is completely equivalent to the state |φ > although |φc > contains

longitudinal and scalar polarization states while |φ > contains only transverse polarization

states. Indeed

< φc|φc
′ > = < φ|fc(L

+)+fc′ (L
+)|φ >

= < φ|fc′ (L
+)fc(L

+)+|φ >

= < φ|φ > . (133)

Thus the scalar product between any two states |φc > and |φc
′ > is fully determined by the

norm of the state |φ >. The state |φc > constructed from a given physical state |φ > defines

an equivalence class. Clearly the state |φ > can be taken to be the representative of this

equivalence class. The members of this equivalence class are related by gauge transformations.

This can be checked explicitly as follows. We compute
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< φc|Âµ|φc > = < φ|fc(L
+)+[Âµ, fc(L

+)]|φ > + < φ|[fc(L
+)+, Âµ]|φ > + < φ|Âµ|φ > .

(134)

By using the fact that the commutators of Âµ with L(~p) and L(~p)+ are c−numbers we obtain

< φc|Âµ|φc > =
∫

d3~pc(~p)[Âµ, L(~p)
+] +

∫

d3~pc(~p)∗[L(~p), Âµ]+ < φ|Âµ|φ > . (135)

We compute

[Âµ, L(~p)+] =
h̄c

√

2ω(~p)
e−

i

h̄
px(ǫµ3 (~p) + ǫµ0 (~p)). (136)

Thus

< φc|Â
µ|φc > = h̄c

∫

d3~p
√

2ω(~p)

(

ǫµ3 (~p) + ǫµ0 (~p)
)(

c(~p)e−
i

h̄
px + c(~p)∗e

i

h̄
px

)

+ < φ|Âµ|φ >

= h̄c
∫

d3~p
√

2ω(~p)

(

pµ

n.p

)(

c(~p)e−
i

h̄
px + c(~p)∗e

i

h̄
px

)

+ < φ|Âµ|φ >

= h̄c(−
h̄

i
∂µ)

∫

d3~p
√

2ω(~p)

(

1

n.p

)(

c(~p)e−
i

h̄
px − c(~p)∗e

i

h̄
px

)

+ < φ|Âµ|φ >

= ∂µΛ+ < φ|Âµ|φ > . (137)

Λ = ih̄2c
∫

d3~p
√

2ω(~p)

(

1

n.p

)(

c(~p)e−
i

h̄
px − c(~p)∗e

i

h̄
px

)

. (138)

Since p0 = |~p| we have ∂µ∂
µΛ = 0, i.e. the gauge function Λ is consistent with the Lorentz

gauge condition.

1.7 Propagator

The probability amplitudes for a gauge particle to propagate from the spacetime point y to

the spacetime x is

iDµν(x− y) =< 0|Âµ(x)Âν(y)|0 > . (139)

We compute

iDµν(x− y) = c2
∫

d3~q

(2πh̄)3

∫

d3~p

(2πh̄)3
1

√

2ω(~q)

1
√

2ω(~p)
e−

i

h̄
qxe+

i

h̄
py

3
∑

λ
′
,λ=0

ǫµ
λ
′ (~q)ǫνλ(~p)

× < 0|[â(~q, λ
′

), â(~p, λ)+]|0 >

= c2h̄2
∫

d3~p

(2πh̄)3
1

2E(~p)
e−

i

h̄
p(x−y)

3
∑

λ=0

(−ηλλǫ
µ
λ(~q)ǫ

ν
λ(~p))

= c2h̄2
∫ d3~p

(2πh̄)3
1

2E(~p)
e−

i

h̄
p(x−y)(−ηµν)

= h̄2D(x− y)(−ηµν). (140)
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The functionD(x−y) is the probability amplitude for a massless real scalar particle to propagate

from y to x. The retarded Green’s function of the gauge field can be defined by

iDµν
R (x− y) = h̄2DR(x− y)(−ηµν)

= θ(x0 − y0) < 0|[Âµ(x), Âν(y)]|0 > . (141)

The second line follows from the fact that DR(x − y) = θ(x0 − y0) < 0|[φ̂(x), φ̂(y)]|0 >. In

momentum space this retarded Green’s function reads

iDµν
R (x− y) = h̄2

(

ch̄
∫

d4p

(2πh̄)4
i

p2
e−

i

h̄
p(x−y)

)

(−ηµν). (142)

Since ∂α∂
αDR(x− y) = (−ic/h̄)δ4(x− y) we must have

(

∂α∂
αηµν

)

Dνλ
R (x− y) = h̄cδ4(x− y)ηλµ. (143)

Another solution of this equation is the so-called Feynman propagator for a gauge field given

by

iDµν
F (x− y) = h̄2DF (x− y)(−ηµν)

= < 0|TÂµ(x)Âν(y)|0 > . (144)

In momentum space this reads

iDµν
F (x− y) = h̄2

(

ch̄
∫ d4p

(2πh̄)4
i

p2 + iǫ
e−

i

h̄
p(x−y)

)

(−ηµν). (145)

19



1.8 Problems and Exercises

Maxwell’s Equations

1) Derive Maxwell’s equations from

∂µF
µν =

1

c
Jν , ∂µF̃

µν = 0. (146)

2) Derive from the expression of the field tensor Fµν in terms of Aµ the electric and magnetic

fields in terms of the scalar and vector potentials.

Noether’s Theorem

1) Prove Noether’s theorem for an infinitesimal transformation of the form

φ(x) −→ φ
′

(x) = φ(x) + δφ(x). (147)

2) Determine the conserved current of the Dirac Lagrangian density under the local gauge

transformation

ψ −→ ψ
′

= eiαψ. (148)

3) What is the significance of the corresponding conserved charge.

Polarization Vectors

1) Write down the polarization vectors in the reference frame where nµ = (1, 0, 0, 0).

2) Verify that

2
∑

λ=1

ǫµλ(~p)ǫ
ν
λ(~p) = −ηµν −

pµpν

(np)2
+
pµnν + pνnµ

np
. (149)

Gauge Invariance and Current Conservation

1) Show that current conservation ∂µJµ = 0 is a necessary and sufficient condition for gauge

invariance. Consider the Lagrangian density

L = −
1

4
FµνF

µν + JµA
µ. (150)

2) The gauge-fixed equations of motion are given by

∂µ∂
µAν − (1− ζ)∂ν∂µA

µ =
1

c
Jν . (151)

Show that for ζ 6= 0 these equations of motion are equivalent to Maxwell’s equations in

the Lorentz gauge.
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Commutation Relations Verify

[â(~p, λ), â(~q, λ
′

)+] = −ηλλ′ h̄(2πh̄)3δ3(~p− ~q). (152)

Hamiltonian Operator

1) Show that the classical Hamiltonian of the electromagnetic field is given by

H =
∫

d3x
(

1

2
∂iAµ∂

iAµ −
1

2
∂0Aµ∂

0Aµ

)

. (153)

2) Show that in the quantum theory the Hamiltonian operator is of the form

Ĥ =
∫

d3~p

(2πh̄)3
ω(~p)

( 3
∑

i=1

â(~p, i)+â(~p, i)− â(~p, 0)+â(~p, 0)
)

. (154)

3) Impose the Lorentz gauge condition using the Gupta-Bleuler method. What are the

physical states. What happens to the expectation values of Ĥ.

Physical States Let us define

L(~p) = â(~p, 3)− â(~p, 0). (155)

Physical states are defined by

L(~p)|φ >= 0. (156)

Define

|φc >= fc(L
+)|φ > . (157)

1) Show that the physical state |φc > is completely equivalent to the physical state |φ >.

2) Show that the two states |φ > and |φc > are related by a gauge transformation. Determine

the gauge parameter.

Photon Propagator

1) Compute the photon amplitude iDµν(x− y) =< 0|Âµ(x)Âν(y)|0 > in terms of the scalar

amplitude D(x− y).

2) Derive the photon propagator in a general gauge ξ.
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