Inverse Compton Scattering

Comptonisation is a vast subject. Inverse Compton scattering involves the scattering of
low energy photons to high energies by ultrarelativistic electrons so that the photons
gain and the electrons lose energy. The process is called inverse because the electrons
lose energy rather than the photons, the opposite of the standard Compton effect. We
will treat the case in which the energy of the photon in the centre of momentum frame
of the interaction is much less that mec?, and consequently the Thomson scattering
cross-section can be used to describe the probability of scattering.

Many of the most important results can be worked out using simple physical arguments,
as for example in Blumenthal and Gould (1970) and Rybicki and Lightman (1979).
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Inverse Compton Scattering
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Consider a collision between a photon and a relativistic electron as seen in the
laboratory frame of reference S and in the rest frame of the electron S’. Since

hw' < mec? in S/, the centre of momentum frame is very closely that of the relativistic
electron. If the energy of the photon is hw and the angle of incidence 6 in S, its energy

in the frame S’ is

hw' = yhw([1l 4+ (v/c) cosb] (1)

according to the standard relativistic Doppler shift formula.



Inverse Compton Scattering

Similarly, the angle of incidence ¢’ in the frame S’ is related to 0 by the formulae

sin @ cost +v/c
v[1 + (v/c) cosb] 1+ (v/c)cosh
Now, provided fiw’ < mec?, the Compton interaction in the rest frame of the electron is

simply Thomson scattering and hence the energy loss rate of the electron in S’ is just
the rate at which energy is reradiated by the electron.

sin @' = - cosh =

(2)

According to the analysis of Thomson scattering, the loss rate is
—(dE/dt) = o1cU/ q4, (3)

where U,,4 IS the energy density of radiation in the rest frame of the electron. As
discussed in that section, it is of no importance whether or not the radiation is isotropic.
The free electron oscillates in response to any incident radiation field. Our strategy is
therefore to work out U;ad in the frame of the electron S’ and then to use (3) to work out
(dE/dt)’. Because dE/dt is an invariant between inertial frames, this is also the loss
rate (dE/dt) in the observer’s frame S.



Working out U/, 4 in S
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In S, the electron moves
from z1 10 x5 in the time
interval t1 to t»>. These are
transformed into S’ by the
standard Lorentz
transformation

Suppose the number density of photons in a
beam of radiation incident at angle 6 to the
x-axis is N. Then, the energy density of these
photons in S is Nhw. The flux density of
photons incident upon an electron stationary in
Sis Uagc = Nhwe.

Now let us work out the flux density of this beam
in the frame of reference of the electron S’. We
need two things, the energy of each photon in S’
and the rate of arrival of these photons at the
electron in S’. The first of these is given by (3).
The second factor requires a little bit of care,
although the answer is obvious in the end. The
beam of photons incident at angle 0 in S arrives
at an angle ¢’ in S’ according to the aberration
formulae (2).



Working out U/, 4 in &'

We are interested in the rate of arrival of photons at the origin of S’ and so let us
consider two photons which arrive there at times ¢} and ¢5. The coordinates of these
events in S are

[£1,0,0,t1] = [yV#],0,0,~4t}] and [z5,0,0,t5] = [yVt5,0,0,9t5]  (4)
1 1 2 2

respectively. This calculation makes the important point that the photons in the beam
are propagated along parallel but separate trajectories in S as illustrated by Fig. 30.
From the geometry of the figure, it is apparent that the time difference when the
photons arrive at a plane perpendicular to their direction of propagation in S is
(2221) o501 = (th — )11 + (v/c) cosal, (5)
C
that is, the time interval between the arrival of photons from the direction 6 is shorter by
a factor y[1 4 (v/c) cos ] in S’ thanitisin S.

At = to +




Working out U/, 4 in &'

Thus, the rate of arrival of photons, and correspondingly their number density, is greater
by this factor v[1 4 (v/c) cos ] in S’ as compared with S. This is exactly the same
factor by which the energy of the photon has increased (3). On reflection, we should not
be surprised by this result because these are two different aspects of the same
relativistic transformation between the frames S and S/, in one case the frequency
interval and, in the other, the time interval.

Thus, as observed in S/, the energy density of the beam is therefore

Ulag = [v(1 4 (v/c) cos 0)]° Uraq- (6)

Now, this energy density is associated with the photons incident at angle 6 in the frame
S and consequently arrives within solid angle 27 sin 6 df in S. We assume that the
radiation field in S is isotropic and therefore we can now work out the total energy
density seen by the electron in S’ by integrating over solid angle in S, that is,

U,y = Urad/o v2[1 4 (v/c) cos0]? % sin 6 do. (7)



The Inverse Compton Energy Loss Rate

Integrating, we find

Urad — 4Urad(’Y 1) (8)
Therefore, substituting into (3), we find
(dE/dt)’ = (dE/dt) = So1cUraq(7° — 7). (9)

Now, this is the energy gained by the photon field due to the scattering of the low
energy photons. We have therefore to subtract the energy of these photons to find the
total energy gain to the photon field in S. The rate at which energy is removed from the
low energy photon field is o1cU,54 and therefore, subtracting, we find

dE/dt = UTCUrad(W’ %) —o01clUraq = %UTCUrad(W’2 —1). (10)

We now use the identity (72 — 1) = (v2/c?)~2 to write the loss rate in its final form

2
dE/dt = $orcUraq (” >72. (11)
C




Synchrotron Radiation and Inverse Compton Losses

This is the remarkably elegant result we have been seeking. It is exact so long as

yvhw < mec?.

Notice the remarkable similarity between the expressions for the loss rates by
synchrotron radiation and by inverse Compton scattering, even down to the factor of %
in front of the two expressions.

hemtertno(Z) (), et ()
— | — = 3 U —= — | — = = U — 12
(dt>IC 39TCVrad <CQ>’Y dt /sync 30TCUmag . Rl (12)

This is not an accident. The reason for the similarity is that, in both cases, the electron
IS accelerated by the electric field which it observes in its instantaneous rest-frame. The
electron does not really care about the origin of the electric field. In the case of
synchrotron radiation, the constant accelerating electric field is associated with the
motion of the electron through the magnetic field B, E’ = v x B, and, in the case of
inverse Compton scattering, it is the sum of all the electric fields of the incident waves.
Notice that, in the latter case, the fields of the waves add incoherently and it is the sum
of the squares of the electric field strengths of the waves which appears in the formulae.



he Spectrum of Inverse Compton Radiation

The next calculation is the determination of the spectrum of the scattered radiation.
This can be found by performing two successive Lorentz transformations, first
transforming the photon distribution into the frame S’ and then transforming the
scattered radiation back into the laboratory frame of reference S. This is not a trivial
calculation, but the exact result is given by Blumenthal and Gould (1970) for an incident
isotropic photon field at a single frequency vg. They show that the spectral emissivity
I(v) may be written

3o1cN(vg) v 5 2
1 dv = 2vIn 4 — dv, 13
e = 3TN0y 2uin () v+l (19

where the radiation field is assumed to be monochromatic with frequency vg; N(vg) is
the number density of photons. At low frequencies, the term in square brackets in (13)
is a constant and hence the scattered radiation has the form I(v) o v.



The Spectrum of Inverse Compton Radiation
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It is an easy calculation to show that the
maximum energy which the photon can acquire
corresponds to a head-on collision in which the
photon is sent back along its original path. The
maximum energy of the photon is

(Aw)max = hwy2(1 —|—’U/C)2 ~ 4v°Fwg. (14)

Another interesting result comes out of the
formula for the total energy loss rate of the
electron (11). The number of photons scattered
per unit time is ocU, 54/ hwg and hence the
average energy of the scattered photons is

hw = %’72(’0/6)27%00 ~ %nyTLwo. (15)

This result gives substance to the hand-waving argument that the photon gains one
factor of v in transforming into S’ and then gains another on transforming back to S.



Inverse Compton Radiation

The general result that the frequency of the scattered photons is v ~~ v2v is of
profound importance in high energy astrophysics. We know that there are electrons
with Lorentz factors v ~ 100 — 1000 in various types of astronomical source and
consequently they scatter any low energy photons to very much higher energies.
Consider the scattering of radio, infrared and optical photons scattered by electrons
with v+ = 1000.

Waveband Frequency (Hz) Scattered Frequency (Hz)
170 and Waveband
Radio 107 10+° = UV
Far-infrared 3 x 1012 3 x 1018 = X-rays
Optical 4 x 1014 4 x 1021 = 1.6MeV = ~-rays

Thus, inverse Compton scattering is a means of creating very high energy photons
indeed. It also becomes an inevitable drain of energy for high energy electrons
whenever they pass through a region in which there is a large energy density of
photons.



Emission of a Distribution of Electron Energies

When these formulae are used in astrophysical calculations, it is necessary to integrate
over both the spectrum of the incident radiation and the spectrum of the relativistic
electrons. The enthusiast is urged to consult the excellent review paper by Blumenthal
and Gould (1970). Some of the results are, however, immediately apparent from the
close analogy between the inverse Compton scattering and synchrotron radiation
processes. For example,the spectrum of the inverse Compton scattering of photons of
energy hv by a power-law distribution of electron energies

dN < E"PdE. (16)
results in an intensity spectrum of the scattered radiation of the form
I(v) « u_(p_l)/Q, (17)

because of the 42 dependence of the energy loss rate by inverse Compton scattering
and the fact that the frequency of the scattered radiation is v ~ ~v2v.



Application to Double Radio Sources

The ratio of the total amount of energy liberated by synchrotron radiation and by inverse
Compton scattering by the same distribution of electrons is

(dE/dt)sync [T, dv (radio)  B?/2ug
(dE/dt)ic  [Ixdvx (X-ray) Urad

where U,,q is the energy density of radiation and B the magnetic flux density in the
source region. Thus, if we measure the radio and X-ray flux densities from a source
region and we know U,,4, we can find the magnetic flux density in the source. This
type of phenomenon has been sought for in the hot spots and the extended structures
of double radio sources. In the latter case, it is likely that the dominant source of low
energy photons is the Cosmic Microwave Background Radiation.

(18)



Cygnus A

Radio Map from VLA Chandra X-ray Map

The hot-spots of Cygnus A is a good example of this. According to Wilson, Young and
Shopbell (2002), if the X-ray hot-spots are identified with inverse Compton scattering of
the radio synchrotron emission within the lobes (Synchrotron-self Compton Radiation -
see later), the magnetic field strength is 1.5 x 10~% G. This figure is close to the
equipartition value of the magnetic field strengths 2.5 — 2.8 x 10~% G, assuming

n = 0. It is inferred that the relativistic plasma may well be an electron-positron
plasma. Similar results are found in hot spots in other double radio sources.



The Maximum Lifetimes of High Energy Electrons

An important piece of astrophysics involving the Cosmic Microwave Background
Radiation is that relativistic electrons can never escape from it since it permeates all
space. The energy density of the Cosmic Microwave Background Radiation is

Ug = aT* = 2.6 x 10° eV m—3. Therefore, the maximum lifetime = of any electron
against inverse Compton Scattering is

E E 23 x10%?

dE/dt| %O‘TC"}/QUO Y

For example, we observe 100 GeV electrons at the top of the atmosphere and so they
must have lifetimes = < 107 years.

years (19)



Synchro-Compton Radiation
and the Inverse Compton Catastrophe

Inverse Compton scattering is likely to be an important source of X-rays and ~-rays, for
example, in the intense extragalactic ~v-ray sources. Wherever there are large number
densities of soft photons, the presence of ultrarelativistic electrons must result in the
production of high energy photons, X-rays and ~-rays. The case of special interest in
this chapter is that in which the same relativistic electrons which are the source of the
soft photons are also responsible for scattering these photons to X-ray and ~-ray
energies — this is the process known as synchro-Compton Radiation. One case of
special importance is that in which the number density of low energy photons is so
great that most of the energy of the electrons is lost by synchro-Compton radiation
rather then by synchotron radiation. This line of reasoning leads to what is known as
the inverse Compton catastrophe.



Synchro-Compton Catastrophe
(for radio astronomers)

The ratio, n, of the rates of loss of energy of an ultrarelativistic electron by inverse
Compton and synchrotron radiation in the presence of a photon energy density U, 54
and a magnetic field of magnetic flux density B is

n = (dE/dt)IC — Uphoton.
(dE/dt)sync  B2/2pu0

The synchro-Compton catastrophe occurs if this ratio is greater than 1. In that case,
low energy photons, say, radio photons produced by synchrotron radiation, are
scattered to X-ray energies by the same flux of relativistic electrons. Since 7 is greater
than 1, the energy density of the X-rays is greater than that of the radio photons and so
the electrons suffer an even greater rate of loss of energy by scattering these X-rays to
~-ray energies. In turn, these ~-rays have a greater energy density than the X-rays
...and so on. It can be seen that as soon as the ratio (20) becomes greater than one,
all the energy of the electrons is lost at the very highest energies and so the radio
source should instead be a very powerful source of X-rays and ~-rays. Note that for the
hot spots of Cygnus A, n < 1.

(20)



Synchro-Compton Radiation

Let us study the first stage of the process for the case of compact synchrotron
self-absorbed radio sources. We need the energy density of radiation within a
synchrotron self-absorbed radio source. As we have shown shown, the flux density of
such a source is

L 2]€Te ’I°2

Q where Q=0°=—. (21)

Sv 22 D2

€2 is the solid angle subtended by the source, r is the size of the source and D its
distance. For a synchrotron self-absorbed source, the electron temperature of the
relativistic electrons is the same as its brightness temperature Te = T},. The radio
luminosity of the source is

8mk
L, = 4xD28, = 42, (22)
22
Therefore, the energy density of the radio emission Uppoton IS
Lyv 2k'T ev
Uphoton ™ = —. (23)

Arrle A2c



Synchro-Compton Radiation

L, is the luminosity per unit bandwidth, and so the bolometric luminosity is roughly
vL,. Therefore,

(2]€Tev>

\2¢ Ak Tev g

— — , 24

' (BQ> A2cB2 (24)
210

We can now use the theory of self-absorbed radio sources to express the magnetic flux
density B in terms of observables. Repeating the calculations carried out earlier,

Vg = v/~v° and 3kTy = 3kTe = ymec?, (25)

where T}, is the brightness temperature of the source. Reorganising these relations, we
find

2

9 2

p=21"e (e ), (26)
(& 3kTe



The Synchro-Compton Catastrophe

Therefore, the ratio of the loss rates, n, is

(dE/di)1c (81€2Mok5> 5
n = = vilg.

(dE/dt)sync
This is the key result. It can be seen that the ratio of the loss rates depends very
strongly upon the brightness temperature of the radio source. Putting in the values of
the constants, we find that the critical brightness temperature is

(27)

7T2mgc]‘]‘

1/5

Th = Te = 101215 /7 K, (28)

where vg is the frequency at which the brightness temperature is measured in units of
1079 K, that is, in GHz. Thus, according to this calculation, no compact radio source
should have brightness temperature greater than Tg ~ 1012 K| if the emission is
iIncoherent synchrotron radiation.



VLBI Observations of Compact Sources

The most compact sources, which have been studied by VLBI at centimetre
wavelengths, have brightness temperatures which are less than the synchro-Compton
limit, typically, the values found being Tg ~ 101! K, which is reassuring. Notice that
this is direct evidence that the radiation is the emission of relativistic electrons since the
temperature of the emitting electrons must be at least 1011 K.

This is not, however, the whole story. If the time-scales of variability 7 of the compact
sources are used to estimate their physical sizes, | ~ c7, the source regions must be
considerably smaller than those inferred from VLBI, and then values of Ty exceeding
1011 K are found. It is likely that relativistic beaming is the cause of this discrepancy, a
topic which we take up in a moment.



Normalized Luminosity

Normalized Luminosity
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Band and Grindley (1985)
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Examples of the expected spectra of sources of
synchro-Compton radiation have been evaluated
by Band and Grindlay (1985). They take into
account the transfer of radiation within the
self-absorbed source. The homogeneous
source (top panel) has the standard form of
spectrum, namely, a power-law distribution in
the optically thin spectral region L, o« v ¢,
while, in the optically thick region, the spectrum
has the form L, « v°/2. In the case of the
inhomogeneous source (lower panel), the
magnetic field strength and number density of
relativistic electrons decrease outwards as
power-laws, resulting in a much broader
‘synchrotron-peak’.



Band and Grindley (1985)
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Of particular importance is that they take
account of the fact that, at relativistic
energies hv > 0.5 MeV, the
Klein-Nishina cross-section rather than
the Thomson cross-section should be
used for photon-electron scattering. In
the ultrarelativistic limit, the
cross-section is

7212

TN = (In2hv + %), (29)

1%
and so the cross-section decreases as
(hv)~1 at high energies. Consequently,
higher order scatterings result in much
reduced luminosities as compared with
the non-relativistic calculation.



Ultra-High Energy ~-ray Sources
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In the extreme ~-ray sources Markarian 421 and 501, it is very likely that some form of
inverse Compton radiation is occurring, quite possible via the Synchro-Compton
mechanism. These ~-ray sources are quite enormously luminous and variable. It is
therefore likely that relativistic motions have to be involved to explain their luminosities

and variability.



~v-ray Processes and Photon-Photon Interactions

The processes of synchrotron radiation, inverse Compton scattering and relativistic
bremsstrahlung are effective means of creating high-energy ~-ray photons, but there
are other mechanisms. One of the most important is the decay of neutral pions created

in collisions between relativistic protons and nuclei of atoms and ions of the interstellar
gas.

p+p—at,m w0, (30)
The charged pions decay into muons and neutrinos
7T+—>,u+—|—1/u . m = U Uy (31)

with a mean lifetime of 2.551 x 108 s. The charged muons then decay with mean
lifetime of 2.2001 x 107 ° s

ut —et dvet, | p —e +ve+tu (32)



Neutral Pions

In contrast, the neutral pions decay into pairs of v-rays, 7° — ~ + ~, in only

1.78 x 10~ 16 s. The cross-section for this process is opp—~~y ~ 10739 m? and the
emitted spectrum of v-rays has a broad maximum centred on a ~-ray energy of about
70 MeV (see HEAS3). This is the process responsible for the continuum emission of the
interstellar gas at energies ¢ > 100 MeV. A simple calculation shows that, if the mean
number density of the interstellar gas is N ~ 10° m—3 and the average energy density
of cosmic ray protons with energies greater than 1 GeV about 10° eV m—3, the ~-ray
luminosity of the disc of our Galaxy is about 1032 W, as observed.



Electron-Positron Annihilation

Electron-positron annihilation can proceed in two ways. In the first case, the electrons
and positrons annihilate at rest or in flight through the interaction e™ + ¢~ — 2~.
When emitted at rest, the photons both have energy 0.511 MeV. When the particles
annihilate ‘in flight’, meaning that they suffer a fast collision, there is a dispersion in the
photon energies. It is a pleasant exercise in relativity to show that, if the positron is
moving with velocity v with corresponding Lorentz factor -, the centre of momentum
frame of the collision has velocity V' = ~v(1 4 ~) and that the energies of the pair of
photons ejected in the direction of the line of flight of the positron and in the backward
direction are

(33)

From this result, it can be seen that the photon which moves off in the direction of the
iIncoming positron carries away most of the energy of the positron and that there is a
lower limit to the energy of the photon ejected in the opposite direction of mec?/2.



Electron-Positron Annihilation

If the velocity of the positron is small, positronium atoms, that is, bound states
consisting of an electron and a positron, can form by radiative recombination: 25% of
the positronium atoms form in the singlet 1S state and 75% of them in the triplet 3S;
state. The modes of decay from these states are different. The singlet 1S state has a
lifetime of 1.25 x 1010 s and the atom decays into two ~-rays, each with energy 0.511
MeV. The majority triplet 3S1 states have a mean lifetime of 1.5 x 10~ s and three
~v-rays are emitted, the maximum energy being 0.511 MeV in the centre of momentum
frame. In this case, the decay of positronium results in a continuum spectrum to the low
energy side of the 0.511 MeV line. If the positronium is formed from positrons and
electrons with significant velocity dispersion, the line at 0.511 MeV is broadened, both
because of the velocities of the particles and because of the low energy wing due to
continuum three-photon emission. This is a useful diagnostic tool in understanding the
origin of the 0.511 MeV line. If the annihilations take place in a neutral medium with
particle density less than 1021m~3, positronium atoms are formed. On the other hand,
if the positrons collide in a gas at temperature greater than about 10° K, the
annihilation takes place directly without the formation of positronium.



Electron-Positron Annihilation

The cross-section for electron-positron annihilation in the extreme relativistic limit is

2
T

o =

[In2~ — 1]. (34)

For thermal electrons and positrons, the cross-section becomes

7T7°2
€ . 35
(/) (39)

Positrons are created in the decay of positively charged pions, =1, which are created in
collisions between cosmic ray protons and nuclei and the interstellar gas, roughly equal
numbers of positive, negative and neutral pions being created. Since the 7%s decay
into ~-rays, the flux of interstellar positrons created by this process can be estimated
from the ~-ray luminosity of the interstellar gas. A second process is the decay of
long-lived radioactive isotopes created by nucleosynthesis in supernova explosions. For
example, the 31 decay of 2°Al has a mean lifetime of 1.1 x 10° years. 2%Al is formed
In supernova explosions and then ejected into the interstellar gas where the decay
results in a flux of interstellar positrons.

o~



Photon-Photon collisions

A third process is the creation of electron-positron pairs through photon-photon
collisions, a process of considerable importance in compact ~-ray sources. Let us work
out the threshold energy for this process. If P and P> are the momentum four-vectors
of the photons before the collision

Pi =1/ (e1/0)i1] ; Po=l[ea/c?, (ea/c)inl, (36)
then conservation of four-momentum requires
P+ P>,=P3+ P, (37)

where P3 and P, are the four-vectors of the created particles. To find the threshold for
pair production, we require that the particles be created at rest and therefore

P3 =[0,me] ; Ps=[0,mel (38)

Squaring both sides of (37) and noting that P, - P{ = P> - P> = 0 and that
P3.P3 =P, -Py= P3Py =m2c?,



Photon-Photon Collisions

P3-P3+2P3- P4+ Py4- Py, (39)

Py-P1+2P;-Py+ Py P>

€1€2  €1€2
2( 2 2 cosé’) = 4mgc2, (40)
2 2.4
e = T (41)
e1(1 — cos )

where 6 is the angle between the incident directions of the photons. Thus, if
electron-positron pairs are created, the threshold for the process occurs for head-on
collisions, § = 7w and hence,

m3c? _0.26 x 1012

el €1
where 1 IS measured in electron volts. This process thus provides not only a means
for creating electron-positron pairs, but also results an important source of opacity for
very-high-energy ~-rays.

eV, (42)

€ >



Photon-Photon Opacity

The table shows some important examples of combinations of €1 and 5. Photons with
energies greater than those in the last column are expected to suffer some degree of
absorption when they traverse regions with high energy densities of photons with
energies listed in the first column.

61(eV) 61(GV)
Microwave Background Radiation 6 x 10=% 4 x 1014
Starlight 2 1011
X-ray 103 3 x 108

The cross-section for this process for head-on colisions in the ultrarelativistic limit is

o= w8 o0 (22) ] (43

€1€2 me02

where w = (e165)1/2 and re is the classical electron radius.



Photon-Photon Opacity

In the limit iw &~ mec?, the cross-section is

2 4\ 1/2
_— “

w2

Thus, near threshold, the cross-section for the interaction vy — ete~ is

o~ 777“3 ~ 0.20T. (45)

These cross-sections enable the opacity of the interstellar and intergalactic medium to
be evaluated as well as providing a mechanism by which large fluxes of positrons could
be generated in the vicinity of active galactic nuclei. These results are very important

for the ultra-high ~-ray emission detected by instruments such as the HESS array in
Namibia.



The Compactness Parameter

These considerations are particularly important in the case of the extremely luminous
and highly variable extragalactic y-ray sources discovered by the Compton
Gamma-Ray Observatory (CGRO). A key role is played by the compactness parameter,
which arises in considerations of whether or not a ~-ray source is opaque for v~
collisions because of pair production. Let us carry out a simple calculation which
indicates how the compactness parameter arises. We will carry out the calculation for
the flux of y-rays at threshold, ¢ ~ mec?, for simplicity. The mean free path of the ~-ray
for v~ collisions is A = (Nya)—1 where N is the number density of photons with
energies e = hv ~ mec?. If the source has luminosity -, and radius r, the number
density of photons within the source region is

L
Ny =—1 46
7 4rrlce (46)
The condition for the source to be opaque is » =~ A, that is,
Amr2emec? L
r~ 1 TTeC thats, A | (47)

L,o Armec3r



The Compactness Parameter

The compactness factor C' is defined to be the quantity

Lyo

¢= ArmecSr (48)
If the compactness parameter is very much greater than unity, the ~-rays are destroyed
by electron-positron pair production, resulting in a huge flux of electrons and positrons
within the source region. Consequently, the source would no longer be a hard ~-ray
source. Some of the intense ~-ray sources observed by the CGRO have enormous
luminosities, L, ~ 10%1 W and vary significantly in intensity over time-scales of the
order of days. Inserting these values into (48), it is found that C' > 1 and so there is a
problem in understanding why these sources exist. Fortunately, all the ultraluminous
~-ray sources are associated with compact radio sources, which exhibit synchrotron
self-absorption and superluminal motions. The inference is that the luminosities of the
~-ray sources and the time-scales of variation have been significantly changed by the

relativistic motion of the source region.




Superluminal Motions

The most direct evidence comes from the superluminal
motions observed in the compact radio jets found in VLBI
. observations of active galactic nuclei. In the classic case
" of the radio core of the radio source 3C 273, one of the
radio components appeared to move a distance of 25
light-years in only three years, corresponding to an
observed transverse velocity of about eight times the
speed of light. This is a common phenomenon in the
compact, variable radio sources which often have spectra
which are synchrotron self-absorbed. The phenomenon
has also been observed in Galactic radio sources, for
example, the source GRS 1915+105, which is a binary
ﬁ X-ray source in which the compact X-ray source is

0/ | associated with a stellar mass black hole (Mirabel and
(Sl Rodriguez 1998).




Superluminal Motions

The observation of compact radio sources with brightness temperatures exceeding the
critical value of 1012 K on the basis of their time variability is evidence that relativistic
beaming may be required to overcome the Inverse Compton catastrophe.

Relativistic beaming is the origin of the very
rapid variations in intensity observed in some of
the most extreme active galactic nuclei, the
BL-Lac objects and blazars. If dimensions are
estimated using the causality relation | = cr,
where 7 is the time-scale of the variability, the
brightness temperature would exceed the critical
value of 1012 K. A piece of evidence which
supports this view of the BL-Lac phenomenon is
the radio map of the blazar 3C 371. The central
compact radio source is extended in the
direction of a jet leading to one side of a
classical double radio source.




Relativistic Ballistic Model

vt, cos 0 Vi,

vt, sin 6 v

X

To observer at
distance D from O

The motion of a relativistically
moving source component as
viewed from above.

Let us begin with the simplest, and most
popular, model for superluminal sources, what is
commonly referred to as the relativistic ballistic
model. Let us carry out first the simplest part of
the calculation, the determination of the
kinematics of relativistically moving source
components. The aim is to determine the
observed transverse speed of a component
ejected at some angle 6 to the line of sight at a
high velocity .

The observer is located at a distance D from the
source. The source component is ejected from
the origin O at some time tpy and the signal from
that event sets off towards the observer, where it
arrives at time ¢t = D/c later.



Relativistic Ballistic Model

After time ¢4, the component is located at a distance vt1 from the origin and so is
observed at a projected distance vt sin 6 according to the distant observer. The light
signal bearing this information arrives at the observer at time

D — vty cos6
to =t1 + — (49)
since the signals have to travel a slightly shorter distance D — vt cos 6 to reach the
observer. Therefore, according to the distant observer, the transverse speed of the

component is

y :vtlsinez vty Sin 6 _ vsiné (50)
L to —t , vt1 COSO — | wcosf’
1 — _
C C

It is a simple sum to show that the maximum observed transverse speed occurs at an
angle cosd = v/candis v, = vv, where v = (1 — v2/¢2)~1/2 is the Lorentz factor.



Relativistic Ballistic Model

\J

v

Time measured by )
distant observer 1 year 2 years

Thus, provided the source component moves at a speed close enough to the speed of
light, apparent motions on the sky v > ¢ can be observed without violating causality
and the postulates of special relativity. For example, if the the source component were
ejected at a speed 0.98¢, transverse velocities up to v¢ = 5c¢ are perfectly feasible, the
case illustrated in the diagram.



Relativistic Aberration and Time Dilation

Let us consider first a classical undergraduate
problem in relativity:

e A rocket travels towards the Sun at speed
v = 0.8c. Work out the luminosity, colour,
angular size and brightness of the Sun as
observed from the spaceship when it
crosses the orbit of the Earth. It may be
assumed that the Sun radiates like a
uniform disc with a black-body spectrum at
temperature 1.

This problem includes many of the effects found
In relativistic beaming problems.



Relativistic Aberration and Time Dilation

Let us work out the separate effects involved in evaluating the intensity of radiation
observed in the moving frame of reference.

e [he frequency shift of the radiation The frequency four-vector in the frame of the
Solar System S in Rindler’s notation™ is

K = [@,—ko oS0, —kg sin 9,0], (51)

C
where the light rays are assumed to propagate towards the observer at the orbit of

the Earth, as illustrated in the diagram. The frequency four-vector in the frame of
reference of the spaceship S’ is

/
K' = [@, —kgcos ', —kgsin 0’,0] . (52)

C

*In Rindler’s notation, the components of the four-vectors transform exactly as [ct, =, y, z] according to
the standard Lorentz transformation ct’ = ~(ct — Vz/c), 2’ = ~v(xz — Vt),y = y, 2’ = z. The invariant
norm of the four-vector is |R|? = c?t? — 2 — y? — 2°.



Relativistic Aberration and Time Dilation

We use the time transform to relate the ‘time’-components of the four-vectors:

ct' =~ (ct — E) : (53)
c
and so
W' w Vkgcosé
L=y (_O 4 270 ) . (54)
c c c
Since kg = wq/c,
/ Vv
vV = g (1 + — cos 9) = KLQ. (55)
c

This is the expression for the ‘blue-shift’ of the frequency of the radiation due to the
motion of the spacecraft.

e The waveband Av, in which the radiation is observed, is blue shifted by the same
factor

AV = kKA. (56)



Relativistic Aberration and Time Dilation

e [ime intervals are also different in the stationary and moving frames. This can be
appreciated by comparing the periods of the waves as observed in S and S’

1 1
! . -
Vv = ﬁ VO — T—07 (57)
and so
T 19
T V! (58)

Since the periods 7" and T’ can be considered to be the times measured on clocks,
the radiation emitted in the time interval At is observed in the time interval At’ by
the observer in S’ such that

At = At/k. (59)



Relativistic Aberration and Time Dilation

e Solid Angles It is simplest to begin with the cosine transform, which is derived from
the ‘x’ Lorentz transformation of the frequency four-vector:

v
Ccos O + —
C

cosd = (60)

7 .
1+ —cosé

C
Differentiating with respect to 0 and 6’ on both sides of this relation,

sin 6 do sin 6 do
v 5= ——%5 - (61)
2 (1 + —cos@)
C

12
This result has been derived for an annular solid angle with respect to the z-axis,
but we can readily generalise to any solid angle since d¢’ = d¢ and so

singdgdg o, _ dQ

Ii2 HJ2 .

sin0 do’ =

(62)

sin®’ do’ d¢’ =

The solid angle in S’ is smaller by a factor 2 as compared with that observed in S.
This is a key aspect of the derivation of the aberration formulae.



Relativistic Aberration and Time Dilation

We can now put these results together to work out how the intensity of radiation from
the region of the Sun within solid angle d<2 changes between the two frames of
reference. The intensity I(v) is the power arriving at the observer per unit frequency
interval per unit solid angle from the direction 6. The observer in the spacecraft
observes the radiation arriving in the solid angle d2” about the angle 6’ and so we
transform its other properties into S’. The energy hv N (v) received in S in the time
interval At, in the frequency interval Av and in solid angle A2 is observed in S’ as an
energy ht/ N (V') in the time interval A/, in the frequency interval Av’ and in solid
angle AQ', where N(v) = N (V') is the invariant number of photons. Therefore, the
intensity observed in S’ is

kX K X K2

I(V) = 1) x = I(v)K>. (63)

Now, let us apply this result to the spectrum of black-body radiation, for which

3 _
I(v) = % (e’w/’fT - 1) ' (64)



Relativistic Aberration and Time Dilation

Then,

2h3K3 1 2r3 P 1

where 7! = sT'. In other words, the observer in S’ observes a black-body radiation
spectrum with temperature 77 = «T'. A number of useful results follow from this
analysis. For example, (65) describes the temperature distribution of the Cosmic
Microwave Background Radiation over the sky as observed from the Solar System
which is moving through the frame of reference in which the sky would be perfectly
isotropic on the large scale at a velocity of about 600 km s~ 1. Since V/c ~ 2 x 103
and v =~ 1, the temperature distribution is rather precisely a dipole distribution,

T = Tp[1 + (V/c) cos 0] with respect to the direction of motion of the Solar System
through the Cosmic Microwave Background Radiation.

In the example of the spacecraft travelling at v = 0.8c¢ towards the Sun, we can
illustrate a number of the features of relativistic beaming. In this case, v = 5/3 and the
angle at which there is no change of temperature, corresponding to

Y[l + (V/c)cosh] = 1,is 6 = 60°.



Relativistically Moving Source Components

Let us now turn to the case of relativistically moving source components. We need to
determine the value of « for the source component moving at velocity V' at an angle 6
with respect to the line of sight from the observer to the distant quasar. In this case, a
straightforward calculation shows that the value of  is

1

9 9
7(1—VCOS )

C

(66)

K =

where the source is moving towards the observer as illustrated in the figure. Just as in
the above example, the observed flux density of the source is therefore

L(vg)
S(vobs) = 47(TD02 X K3, (67)

where v,,s = k1. In the case of superluminal sources, the spectra can often be
described by a power-law L(vp) o vy “ and so

S(vp) = igg; x k3T, (68)



Relativistically Moving Source Components

Thus, if the superluminal sources consisted of identical components ejected from the
radio source at the same angle to the line of sight in opposite directions, the relative
intensities of the two components would be in the ratio

v 3—|—C¥
g 1+ —cosé
21— C . (69)

So 1— 2Ycoso
C

It is therefore expected that there should be large differences in the observed intensities
of the jets. For example, if we adopt the largest observed velocities for a given value of
v, COS O = v/c, then in the limit v = ¢,

S]_ . 2 3—|—OA

5= (27 ) . (70)
Thus, since values of v ~ 10 are quite plausible and o« ~ O — 1, it follows that the

advancing component would be very much more luminous than the receding
component. It is, therefore, not at all unexpected that the sources should be one-sided.




Relativistically Moving Source Components

Another complication is the fact that the emission is often assumed to be associated
with jets. If the jet as a whole is moving at velocity v, then the time dilation formula
shows that the advancing component is observed in a different proper time interval as
compared with the receding component, the time which has passed in the frame of the
source being Aty = kAtg where At is the time measured in the observer’s frame of
reference. If the jet consisted of a stream of components ejected at a constant rate from
the active galactic nucleus, the observed intensity of the jet would be enhanced by a
factor of only 217, Thus, the precise form of the relativistic beaming factor is model
dependent and care needs to be taken about the assumptions made.

Let us consider the case of sources exceeding the limiting surface brightness

T, = 1012 K. In the case of the Inverse Compton Catastrophe, the ratio of the loss
rates for inverse Compton scattering and synchrotron radiation depends upon the
product 7. Since the brightness temperature Ty,ps = k>Tp and vops = K, it
follows that n o« x°. Thus, the observed value of T}, can exceed 1012 K if x > 1.



Relativistically Moving Source Components

In the case of the compactness parameter,

(71)

the relativistic beaming factors enable us to understand why these sources should
exist. In the simple argument in which the source components are at rest, it is assumed
that the dimensions of the source are | =~ ct from its rapid time variability. The observed
luminosity is enhanced by a factor k31 and, in addition, because the time-scale of
variability appears on the denominator, the observed value is shorter by a factor ~ and
so the compactness parameter is increased by relativistic beaming by a factor of
roughly k1. Since a ~ 1, it can be seen that C' « x> and so, in the frame of the
source components themselves, the value of the compactness parameter can be
reduced below the critical value.



The Acceleration of Charged Particles

This is a huge subject of importance for many aspects of high energy astrophysics and
there is only space to give a brief impression of the mechanism which now dominates
much of the thinking in the field. The preferred mechanism is involves first order Fermi
acceleration of particles in strong shock waves. Let us begin with a simple general
formulation of the acceleration process in which the average energy of the particle after
one collision is £ = BFEy and the probability that the particle remains within the
accelerating region after one collision is P. Then, after k collisions, there are

N = Ny PF particles with energies E = Ey/*. Eliminating k between these quantities,

IN(N/Np) _InP

In(E/Eg)  Ing’ (72)
and hence
InP/Ing
ﬁ — <£> . (73)
Np Eq



Fermi Acceleration

In fact, this value of N is N(> E), since this number reach energy £ and some
fraction of them is accelerated to higher energies. Therefore,

N(E)dE = constant x g~1+InP/Infqp (74)

Notice that we have obtained a power-law energy spectrum of the particles, exactly
what is required to account for the non-thermal spectra of many different classes of
high energy astrophysical sources.

In Fermi’s original version of the Fermi mechanism, o. was proportional to (V/c)?,
because of the decelerating effect of the following collisions. The original version of
Fermi’s theory is therefore known as second order Fermi acceleration and is a very
slow process. We would do much better if there were only head-on collisions, in which
case the energy increase would be AE/E « V/¢, that is, first-order in V/c and,
appropriately, this is called first-order Fermi acceleration.



First-order Fermi Acceleration

A very attractive version of first-order Fermi acceleration in the presence of strong
shock waves was discovered independently by a number of workers in the late 1970s.
The papers by Axford, Leer and Skadron (1977), Krymsky (1977), Bell (1978) and
Blandford and Ostriker (1978) stimulated an enormous amount of interest in this
process for the many environments in which high energy particles are found in
astrophysics. There are two different ways of tackling the problem. One starts from the
diffusion equation for the evolution of the momentum distribution of high energy
particles in the vicinity of strong shock waves (for example, Blandford and Ostriker
1978).

The second is a more physical approach in which the behaviour of individual particles is
followed (for example, Bell 1978). Let us adopt Bell's version of the theory which makes
the essential physics clear and indicates why this version of first order Fermi
acceleration results remarkably naturally in a power-law energy spectrum of high
energy particles.



First-order Fermi Acceleration

To illustrate the basic physics of the acceleration process, let us consider the case of a
strong shock propagating through the interstellar medium. A flux of high energy
particles is assumed to be present both in front of and behind the shock front. The
particles are considered to be of very high energy and so the velocity of the shock is
very much less than those of the high energy particles.

The key point about the acceleration mechanism is that the high energy particles hardly
notice the shock at all since its thickness is normally very much smaller than the
gyroradius of a high energy particle. Because of turbulence behind the shock front and
irregularities ahead of it, when the particles pass though the shock in either direction,
they are scattered so that their velocity distribution rapidly becomes isotropic on either
side of the shock front. The key point is that the distributions are isotropic with respect
to the frames of reference in which the fluid is at rest on either side of the shock.



v, = U]
P T4 P4

(b)

(© (d)

It is often convenient to transform into the frame of reference in which the shock front is
at rest and then the up-stream gas flows into the shock front at velocity v; = U and
leaves the shock with a downstream velocity v». The equation of continuity requires
mass to be conserved through the shock and so

pP1V1 = pU2.
In the case of a strong shock, p>/p1 = (v + 1) /(v — 1) where ~ is the ratio of
specific heats of the gas. Taking v = 5/3 for a monatomic or fully ionised gas, we find
p>/p1 = 4 and so vp = (1/4)vq (see figure (b)).



Now let us consider the high energy particles ahead of the shock. Scattering ensures
that the particle distribution is isotropic in the frame of reference in which the gas is at
rest. It is instructive to draw diagrams illustrating the dynamical situation so far as
typical high energy particles upstream and downstream of the shock are concerned.
Let us consider the upstream particles first. The shock advances through the medium
at velocity U but the gas behind the shock travels at a velocity (3/4)U relative to the
upstream gas (c). When a high energy particle crosses the shock front, it obtains a
small increase in energy, of the order AE/E ~ U/c. The particles are then scattered
by the turbulence behind the shock front so that their velocity distributions become
Isotropic with respect to that flow.



Now let us consider the opposite process of the particle diffusing from behind the shock
to the upstream region in front of the shock (Figure d). Now the velocity distribution of
the particles is isotropic behind the shock and, when they cross the shock front, they
encounter gas moving towards the shock front again with the same velocity (3/4)U. In
other words, the particle undergoes exactly the same process of receiving a small
increase in energy A E on crossing the shock from downstream to upstream as it did in
travelling from upstream to downstream.

This is the clever aspect of this acceleration mechanism. Every time the particle
crosses the shock front it receives an increase of energy, there are never crossings in
which the particles lose energy, and the increment in energy is the same going in both
directions. Thus, unlike the standard Fermi mechanism in which there are both head-on
and following collisions, in the case of strong shock fronts, the collisions are always
head-on and energy is transferred to the particles. The beauty of the mechanism is the
complete symmetry between the passage of the particles from upstream to
downstream and from downstream to upstream through the shock wave.



Results of Simple Calculations

The average energy gain when particles cross from one side of the shock to the other is

(85 =3t

the factor of % coming from averaging over all angles of incidence of the particles with
respect to the shock wave. V' = %U is the speed of the material behind the shock.
Thus, in one round trip, the fractional energy gain is

(4 -10-Y

C C
The other factor we need is the fraction of the particles which are lost per cycle.
Particles are lost by being ‘advected’ downstream by the flow of gas behind the shock,
the downstream flux being %UN, whereas the number of particles crossing the shock is
%N c. Thus, the loss probability is the ratio of these fluxes U/c and the probability of the
particles remaining within the accelerating region is

p—1_Y (77)

C



Therefore,

4 4 U U
Inﬁzln(l—l——V):—V:g Ianln(l——):——. (78)
3c 3c C C C
Inserting these values into (3), we find
InP/In3 = —1, (79)
and so the differential spectrum of the accelerated electrons is
N(E)dE «« E-YINP/INBgp = p=24E. (80)

This is the remarkable result of this version of first-order Fermi acceleration. The
predicted spectrum is of power-law form with spectral index —2, corresponding to a
synchrotron emission spectrum o« = 0.5. It may be argued that this is a somewhat
flatter spectrum than that of many non-thermal galactic and extragalactic sources.
Nonetheless, it is a remarkable result that roughly the correct form of spectrum is
found, particularly when it is appreciated that the result depends only upon the
assumption that the particles diffuse back and forth across a strong shock wave.



