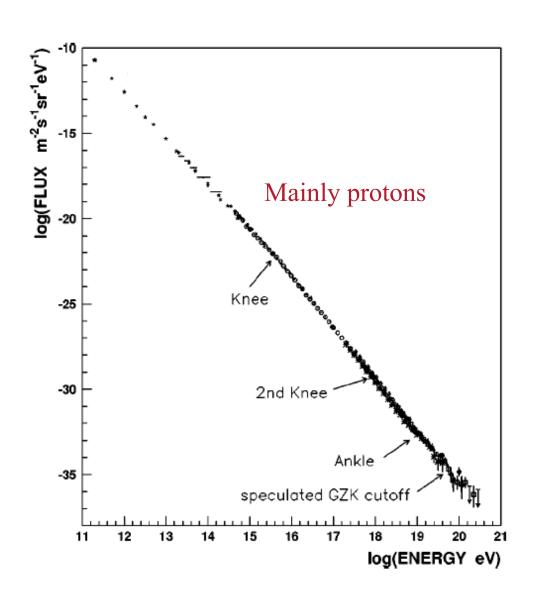
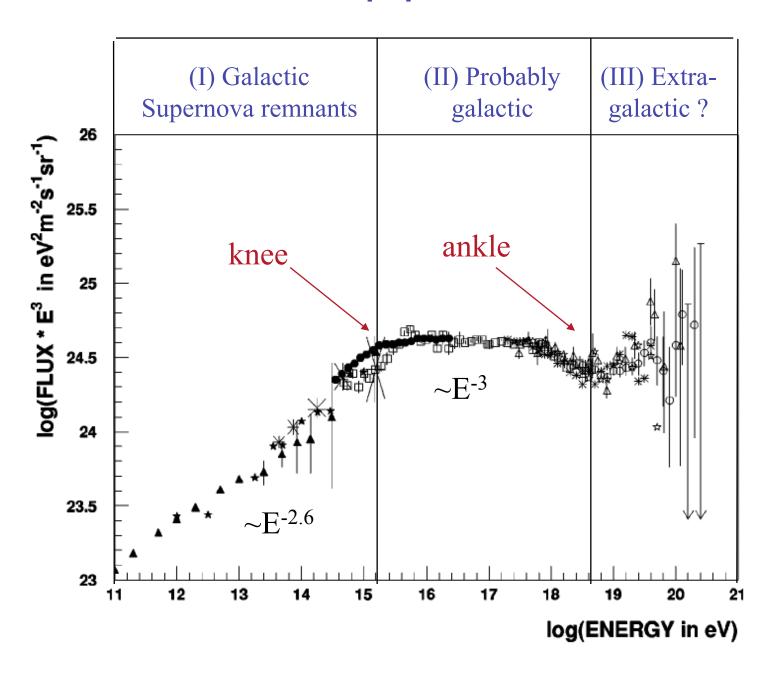


SN1006: A supernova remnant 7,000 light years from Earth X-ray (blue): NASA/CXC/Rutgers/G.Cassam-Chenai, J.Hughes et al; Radio (red): NRAO/AUI/GBT/VLA/Dyer, Maddalena & Cornwell; Optical (yellow/orange): Middlebury College/F.Winkler. NOAO/AURA/NSF/CTIO Schmidt & DSS

Cosmic ray spectrum arriving at earth

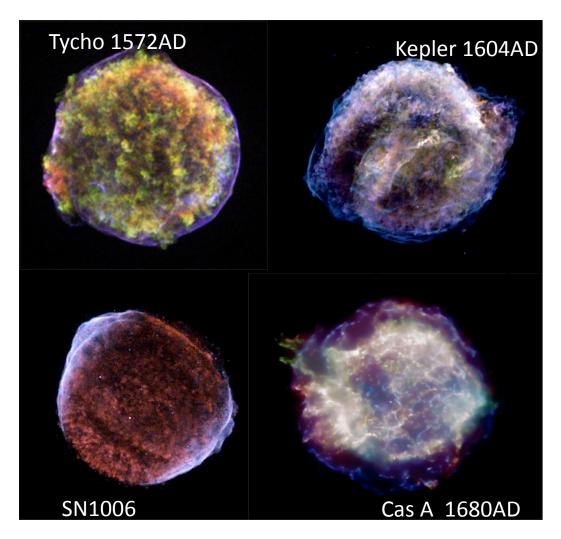


CR populations



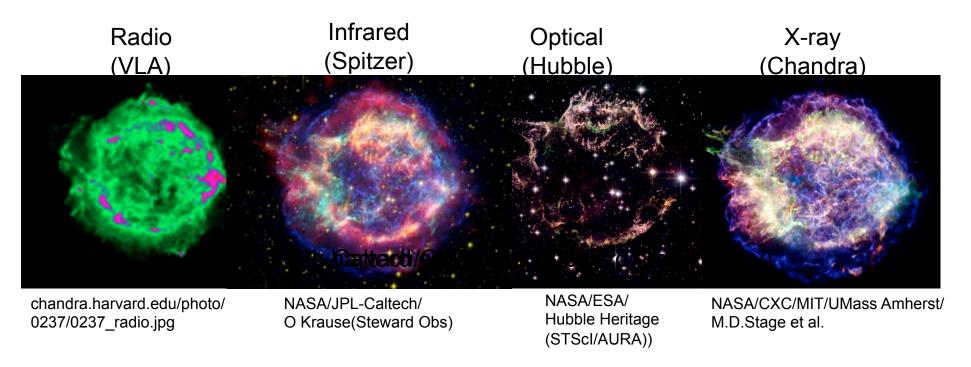
Why shocks?

Historical shell supernova remnants



Chandra observations

Cassiopeia A



Mixture of line radiation & synchrotron continuum

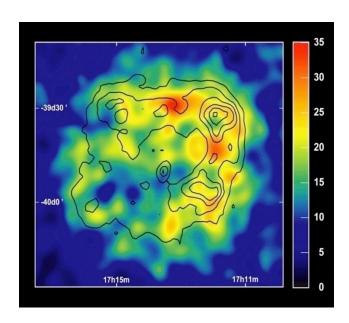
Synchrotron in magnetic field ~ 0.1-1mG

Radio ($hv \sim 10^{-5} eV$): electron energy $\sim 1 GeV$

X-ray ($hv \sim 10^3 eV$): electron energy $\sim 10 \text{ TeV}$

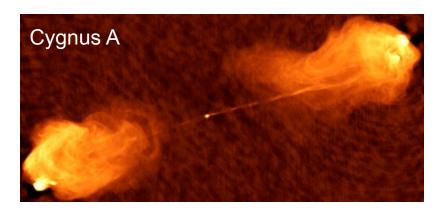
HESS: γ-rays directly produced by TeV particles

SNR RX J1713.7-3946

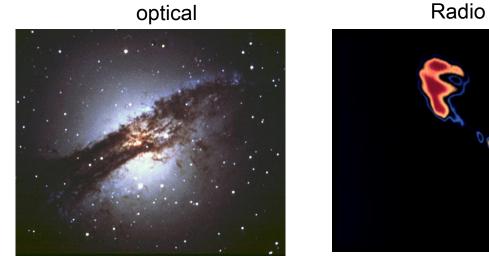


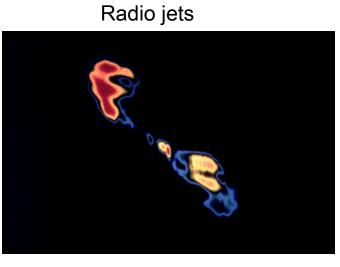
Aharonian et al Nature (2004)

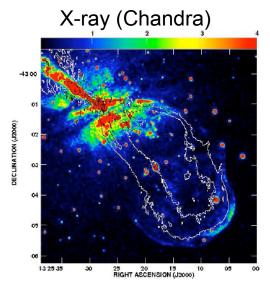
Active galaxies



Centaurus A is the closest powerful radio galaxy (5Mpc)







Strong shock: high Mach number

In shock rest frame

pressure

density

velocity

Upstream

$$u = u_{shock}$$
 $\rho = \rho_0$

$$kT = 0$$
 $P = 0$

Downstream

$$u = \frac{1}{4}u_{shock} \qquad \rho = 4\rho_0$$

$$kT = \frac{3}{16} \left(\frac{\overline{A}}{1 + \overline{Z}} \right) m_p u_{shock}^2 \qquad P = \frac{3}{4} \rho u_{shock}^2$$

Conserved across shock (Rankine Hugoniot relations)

Mass flux

 ρu

Shock turns kinetic streaming energy Into random thermal energy

Momentum flux $P + \rho u^2$

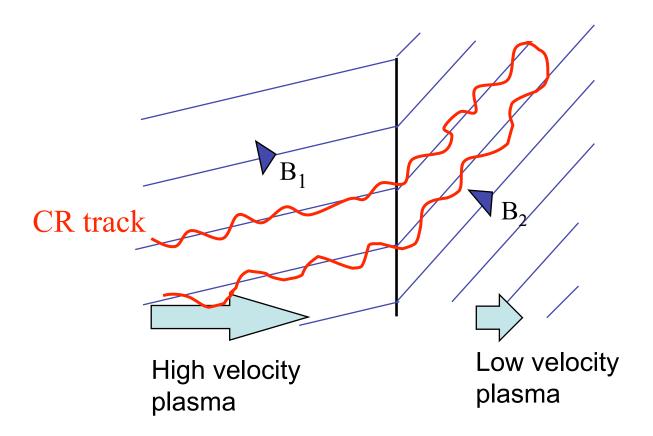
$$P + \rho u^2$$

Energy flux $\frac{5}{2}Pu + \frac{1}{2}\rho u^3$

Divert part of thermal energy Into high energy particles

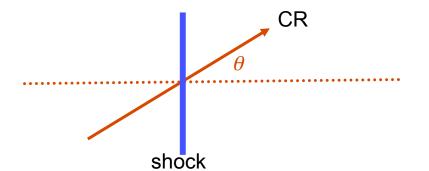
Cosmic ray acceleration by shocks

Cosmic ray acceleration



Due to scattering, CR recrosses shock many times Gains energy at each crossing

Shock acceleration energy spectrum: energy gain



Change in fluid velocity across shock

$$\Delta v = v_s - \frac{v_s}{4} = \frac{3v_s}{4}$$

Change in momentum from upstream to downstream $\Delta p_1 = p' - p = p \frac{\Delta V}{c} \cos \theta$

Mean increase in momentum
$$<\Delta p_1>=\frac{\int_0^{\pi/2}\Delta p_1\cos\vartheta\sin\vartheta d\vartheta}{\int_0^{\pi/2}\cos\vartheta\sin\vartheta d\vartheta}=\left(v_s/2c\right)p$$

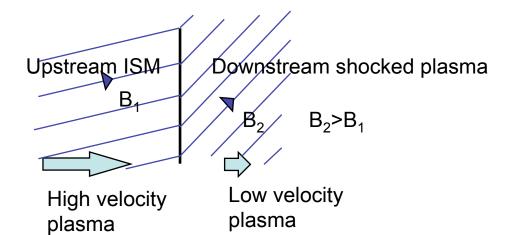
Similar increase in momentum on recrossing into upstream

$$<\Delta p_2> = (v_s/2c)p$$

Average fractional energy gained at each crossing is

$$\frac{\Delta \varepsilon}{\varepsilon} = \frac{\langle \Delta p_1 \rangle + \langle \Delta p_2 \rangle}{p} = \frac{\mathbf{v}_s}{c}$$

Shock acceleration energy spectrum: loss rate



Shock velocity: v_s

CR density at shock: n

CR cross from upstream to downstream at rate *nc*/4

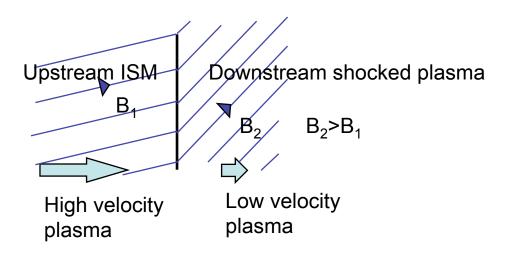
CR carried away downstream at rate $nv_{\text{downstream}} = nv_{\text{s}}/4$

Mean number of shock crossings = $(nc/4)/(nv_s/4)=c/v_s$

Fraction lost at each shock crossing is v_s/c

$$\frac{\Delta n}{n} = -\frac{\mathbf{V}_s}{c}$$

Shock acceleration energy spectrum



Shock velocity: v_s

CR density at shock: n

$$\frac{\Delta n}{n} = -\frac{\mathbf{V}_s}{c}$$

Fractional energy gain per shock crossing $\frac{\Delta \mathcal{E}}{\mathcal{E}}$ =

$$\frac{\Delta \varepsilon}{\varepsilon} = \frac{\mathbf{v}_s}{c}$$

Turn into differential equation

$$\frac{dn}{d\varepsilon} \approx \frac{\Delta n}{\Delta \varepsilon} = -\frac{n}{\varepsilon}$$

$$\implies n \propto \varepsilon^{-1}$$

integrated spectrum

Differential energy spectrum

$$N(\varepsilon)d\varepsilon \propto \varepsilon^{-2}d\varepsilon$$

Derivation from Boltzmann equation

Krimskii 1977 Axford, Leer & Skadron 1977 Blandford & Ostriker 1978

The Vlasov-Fokker-Planck (VFP) equation

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} - e(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \frac{\partial f}{\partial \mathbf{p}} = C(f)$$
Vlasov equation (collisioness) Collisions Fokker-Planck

$$f(x,y,z,p_x,p_y,p_z,t)\,dxdydzdp_x\,dp_y\,dp_z$$
 = number of CR in phase space volume $dxdydzdp_x\,dp_y\,dp_z$

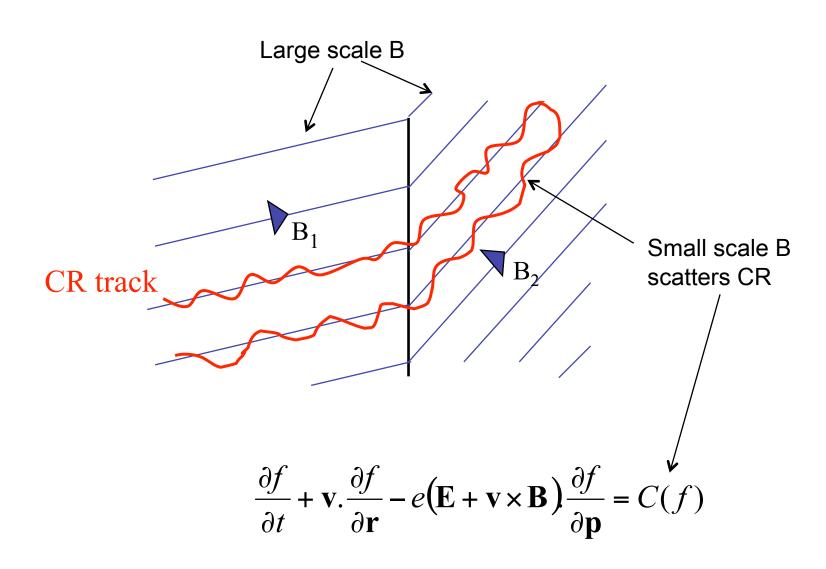
VFP equation:

- 1) Advection: at velocity **v** in **r**-space at velocity e(E+vxB) in **p**-space

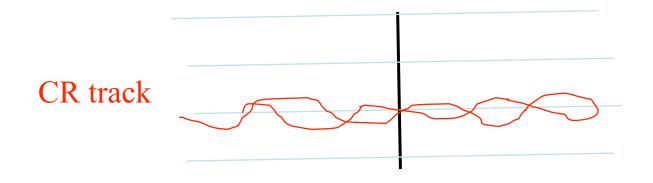
 B on scale > CR Larmor radius
- 2) Collisions: small angle scattering

Due to B on scale < CR Larmor radius

Cosmic ray acceleration



Parallel shock



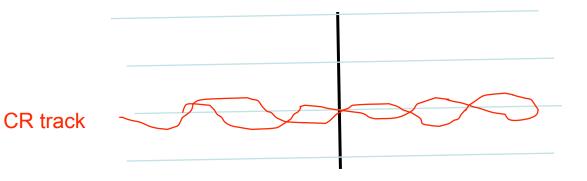
$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} - e(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \frac{\partial f}{\partial \mathbf{p}} = C(f) \longrightarrow \frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{r}} = C(f)$$

Only diffusion along B matters

Large scale field irrelevant

Same is if no large scale field

Redefine f in local fluid rest frame



f fluid rest frame

Fluid moves at velocity u

$$\frac{\partial f}{\partial t} + (\mathbf{v}_x + u) \frac{\partial f}{\partial x} - \frac{\partial u}{\partial x} p_x \frac{\partial f}{\partial p_x} = C(f)$$
Scattering in angle advection with fluid

Frame transformation

Sub-relativistic shocks: small u/c



To first approximation in u/c
$$f = f_0(p) + f_1(p) \frac{p_x}{p}$$
 isotropic drift

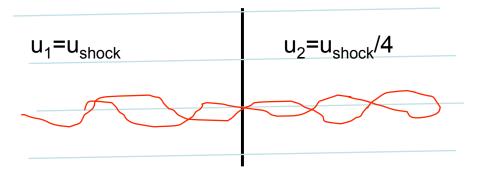
VFP equation reduces to

VFP equation reduces to
$$\frac{\partial f_0}{\partial t} + u \frac{\partial f_0}{\partial x} + \frac{\mathbf{v}}{3} \frac{\partial f_1}{\partial x} - \frac{1}{3} \frac{\partial u}{\partial x} p \frac{\partial f_0}{\partial p} = 0$$

$$\mathbf{v} \frac{\partial f_0}{\partial x} = -\mathbf{v} f_1$$
Scattering frequency
$$\begin{array}{c} \frac{\partial f_0}{\partial t} + u \frac{\partial f_0}{\partial x} - \frac{\partial}{\partial x} \left(\frac{\mathbf{v} \mathbf{v}}{3} \frac{\partial f_0}{\partial x} \right) - \frac{1}{3} \frac{\partial u}{\partial x} p \frac{\partial f_0}{\partial p} = 0 \\ \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \\ \text{Advection Diffusion adiabatic compression} \end{array}$$

Steady state solution

$$f = f_0(p) + f_1(p) \frac{p_x}{p}$$



No escape upstream:

$$u_1 f_0 + \frac{c}{3} f_1 = 0$$

Downstream: no drift relative to background

$$f_1 = 0$$

Boundary condition at shock $\left[f_1 - \frac{u_1}{c} \, p \, \frac{\partial f_0}{\partial p} \right]_{upstream} = \left[f_1 - \frac{u_2}{c} \, p \, \frac{\partial f_0}{\partial p} \right]_{downstream}$

Acceleration efficiency

Efficiency

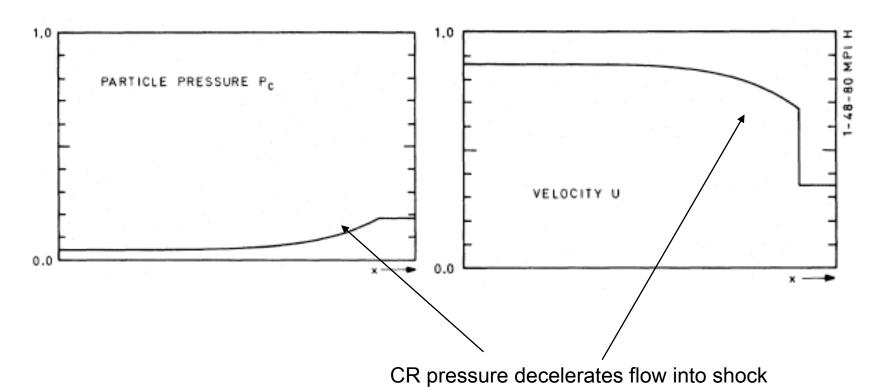
• Has to be efficient (10-50%) to explain galactic CR energy density

Solar wind shocks can be >10% efficient

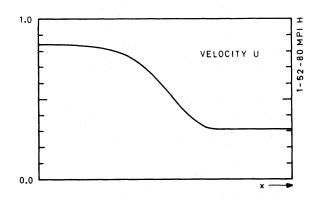
• Shock processes produce many suprathermal protons

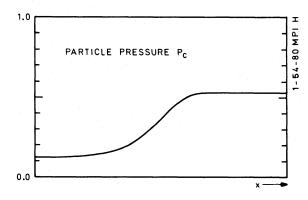
At high efficiency: non-linear feedback onto shock

Drury & Voelk (1981)



High efficiency: concave spectrum

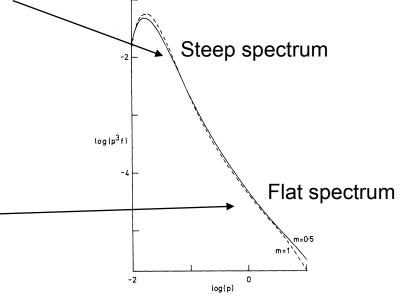




Low energy, small mfp CR see smooth shock:

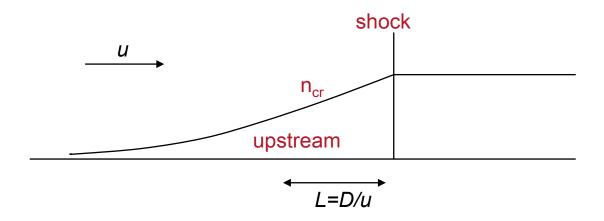
weak acceleration, steep spectrum

High energy spectrum flatter than p^{-4} Shock compression > 4 Due to mildly relativistic equation of state



Maximum CR energy

CR upstream of shock



Balance between:

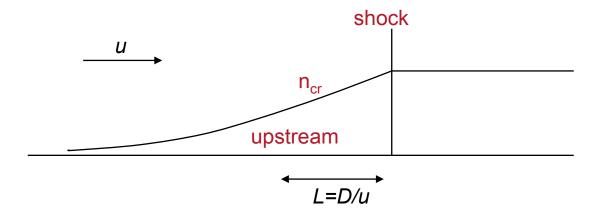
- flow into shock
- diffusion away from shock

$$\frac{\partial n_{cr}}{\partial t} = -u \frac{\partial n_{cr}}{\partial x} - D \frac{\partial^2 n_{cr}}{\partial x^2} = 0$$

$$n_{cr} = n_0 e^{ux/D}$$

Scaleheight
$$L = \frac{D}{u}$$

CR acceleration time



Number of CR upstream:
$$n_{cr} \frac{D_{upstream}}{u_{shock}}$$

Flow rate into shock: $\frac{1}{4}n_{cr}u_{shock}$

Average time spent upstream:
$$\tau_{upstream} = \frac{4D_{upstream}}{u_{shock}^2}$$

Average time spent upstream+downstream:
$$\tau = \frac{4D_{upstream}}{u_{shock}^2} + \frac{4D_{downstream}}{(u_{shock}/4)^2}$$

Time needed for acceleration (Lagage & Cesarsky)

Maximum CR energy

Acceleration time
$$\tau = \frac{8D}{u_{shock}^2}$$
 $\lambda \leq \frac{3}{8} \frac{u_{shock}}{c} R$ where $R = u_{shock} \tau$ SNR radius

Smallest possible mfp:
$$\lambda = \frac{p_{cr}}{eB}$$

Limit on CR momentum:
$$p_{cr} = \frac{3}{8} \frac{u_{shock}}{c} eBR \propto Bu_{shock}R$$

Hillas parameter

Typically for young SNR

ISM mag field:
$$3\mu$$
G
$$u_{shock}=c/30$$

$$R \sim 10^{17} \text{m}$$

Max CR energy ~ 10¹⁴eV

under favourable assumptions

Hillas diagram

(condition on RuB)

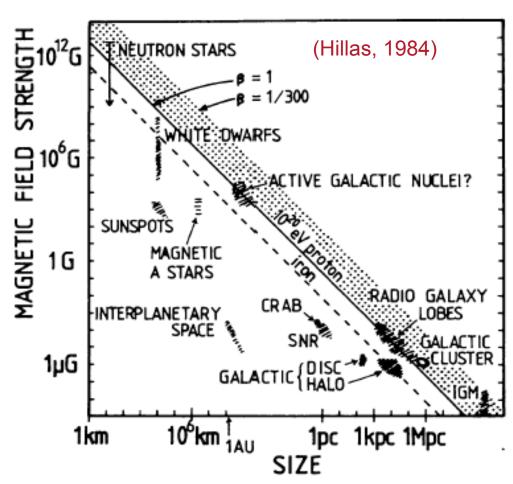
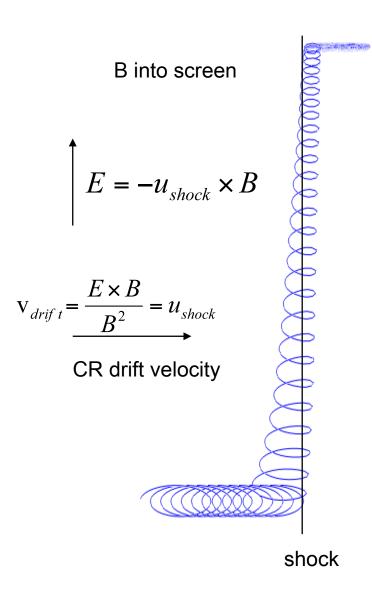


Figure 1 Size and magnetic field strength of possible sites of particle acceleration. Objects below the diagonal line cannot accelerate protons to 10^{20} eV.

Perpendicular shocks

(Jokipii 1982, 1987)

CR trajectory at perpendicular shock (no scattering)



CR gain energy by drifting in E field

CR acceleration at perpendicular shock

CR trajectory divides into

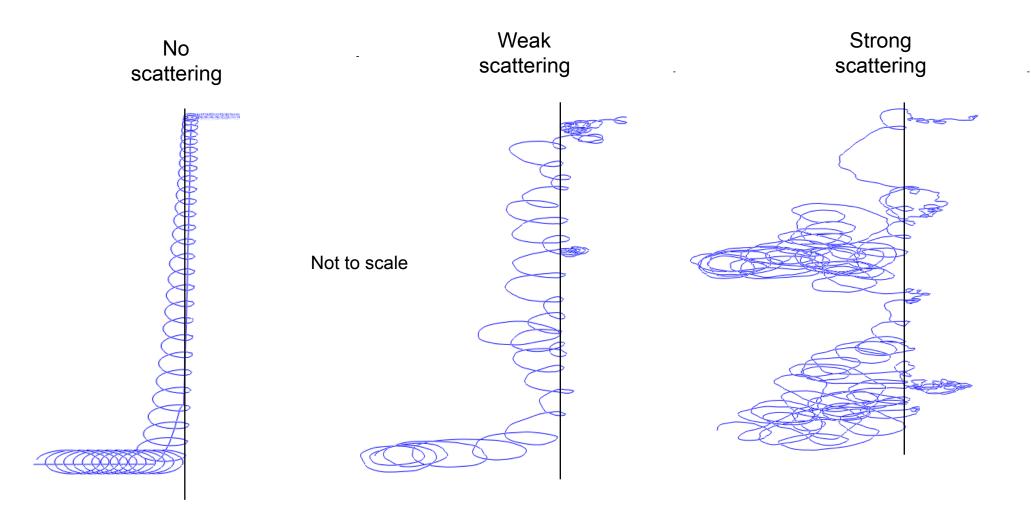
- Motion of gyrocentre
- Gyration about gyrocentre

Without diffusion:

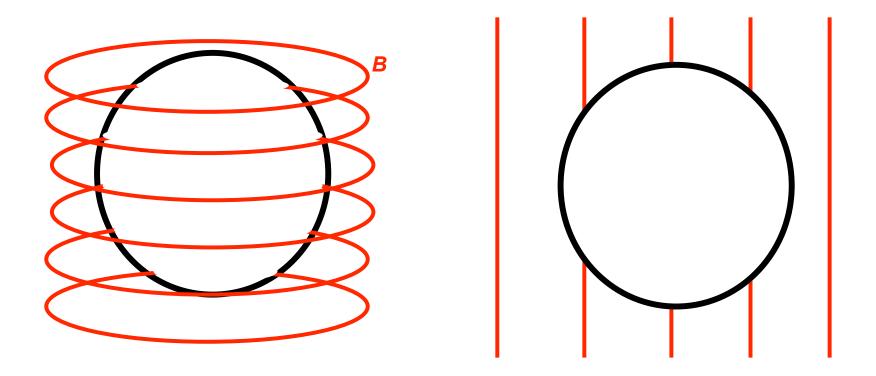
Every CR gets small adiabatic gain due to compression at shock

CR acceleration at perpendicular shock: with scattering

Diffusive shock theory applies
Provided gyrocentre diffuses over distances
greater than Larmor radius during shock transit
Same power law (see later)



CR acceleration at perpendicular shock

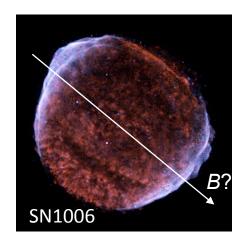


$$E = -u_{shock} \times B$$

Transit between pole & equator: energy gain ~ $eER = eu_{shock}BR$

Hillas parameter as with parallel shock: similar max CR energy

The case of SN1006



Polar x-ray synchrotron emission?

At perpendicular shocks

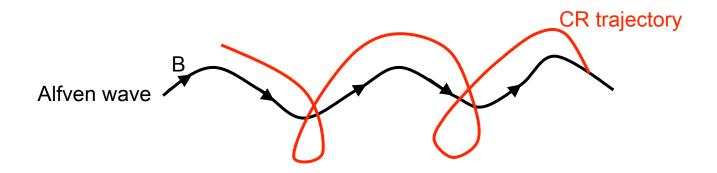
- Acceleration is faster potentially higher CR energy
- CR energy limited to euBR (Hillas) by space rather than time
- Injection is more difficult at a perpendicular shock
- CR scattering frequency has to be in right range

Room for discussion!

CR scattering

what is the mean free path?

CR drive a 'resonant' instability



Spatial resonance between wavelength and CR Larmor radius

wave deflects CR ← CR current drives wave

Skilling (1975)

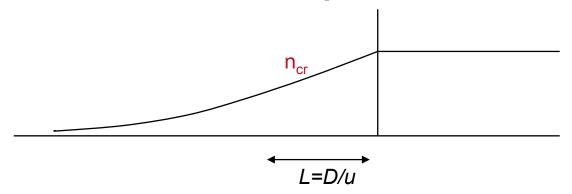
Wave growth (energy density I)

$$\frac{\partial I}{\partial t} + u \frac{\partial I}{\partial x} = \frac{\mathbf{v}_A p \, c}{U_M} \frac{\partial n_{cr}}{\partial x} \qquad I = \frac{\delta B^2}{B^2}$$

CR scattering

$$\frac{\partial n_{cr}}{\partial t} + u \frac{\partial n_{cr}}{\partial x} = \frac{\partial}{\partial x} \left(D \frac{\partial n_{cr}}{\partial x} \right) \qquad D = \frac{4}{3\pi} \frac{c r_g}{I}$$

Turbulence upstream of shock



Skilling (1975)

Wave growth (amplitude *I*)

$$\frac{\partial I}{\partial t} + u \frac{\partial I}{\partial x} = \frac{\mathbf{v}_A p \, c}{U_M} \frac{\partial n_{cr}}{\partial x}$$

CR scattering

$$\frac{\partial I}{\partial t} + u \frac{\partial I}{\partial x} = \frac{\mathbf{v}_A p \, c}{U_M} \frac{\partial n_{cr}}{\partial x} \qquad \qquad \frac{\partial n_{cr}}{\partial t} + u \frac{\partial n_{cr}}{\partial x} = \frac{\partial}{\partial x} \left(D \frac{\partial n_{cr}}{\partial x} \right) \qquad \qquad D = \frac{4}{3\pi} \frac{c r_g}{I}$$

Solution $I_{shock} = M_A \frac{U_{cr}}{\rho u_{shock}^2}$ $\text{mfp} = \frac{4}{\pi} \frac{r_g}{I}$ $L = \frac{4}{3} \frac{c}{u_{shock}} \frac{r_g}{I}$ Alfven Mach number ~1000 CR efficiency ~0.1

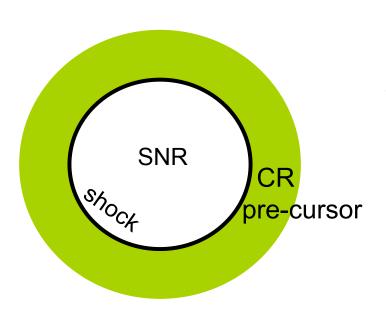
$$mfp = \frac{4}{\pi} \frac{r_g}{I} \qquad L = \frac{4}{3} \frac{c}{u_{shock}} \frac{r_g}{I}$$

Question: What does I > 1 tell us?

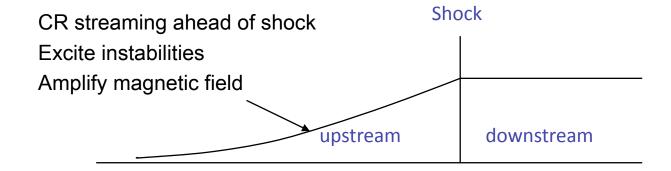
?Implies?: mfp < Larmor radius

Waves non-linear: I >> 1

Re-examine CR scattering



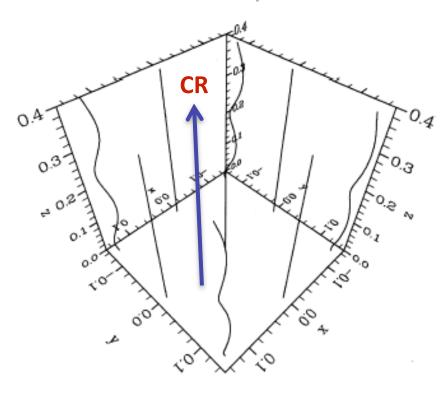
Streaming CR excite instabilities



Streaming instabilities amplify magnetic field

Lucek & Bell (2000)

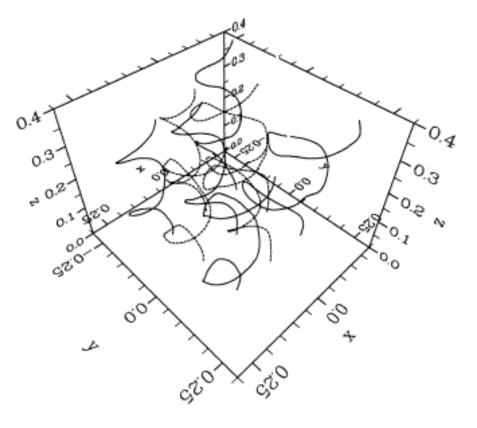
B field lines, t = 0



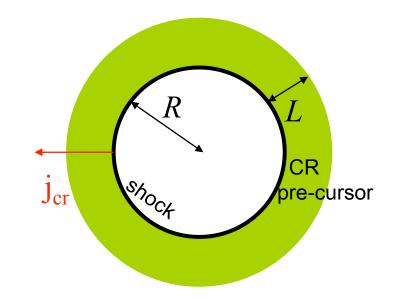
CR treated as particles

Thermal plasma as MHD

B field lines, t = 2



Electric currents carried by CR and thermal plasma



Density of 10^{15}eV CR : ~ 10^{-12} cm^{-3} Current density: j_{cr} ~ $10^{-18} \text{ Amp m}^{-2}$

CR current must be balanced by current carried by thermal plasma

$$j_{\text{thermal}} = -j_{\text{cr}}$$

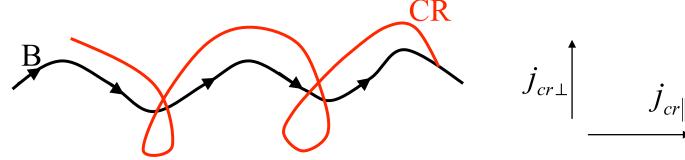
 $j_{
m thermal} {
m x} B$ force acts on plasma to balance $j_{
m cr} {
m x} B$ force on CR

Three equations control the instability

1)
$$\rho \frac{du}{dt} = -\nabla p - \frac{1}{\mu_0} B \wedge (\nabla \wedge B) - j_{cr} \wedge B$$

$$2) \qquad \frac{\partial B}{\partial t} = \nabla \wedge (u \wedge B)$$

3) Equation for j_{cr} in terms of perturbed B

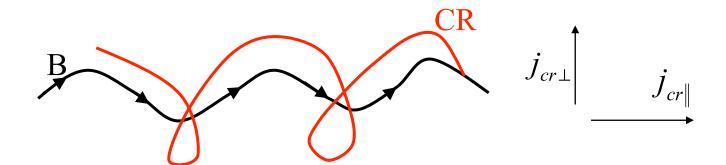


jxB driving force splits into two parts:

$$\rho \frac{du}{dt} = -\nabla p - \frac{1}{\mu_0} B \times (\nabla \times B) - j_{cr\perp} \times B - j_{cr\parallel} \times B$$

Resonant Alfven instability

$$\rho \frac{\partial u}{\partial t} = -\nabla p - \frac{1}{\mu_0} B \times (\nabla \times B) - \left[j_{cr\perp} \times B - j_{cr\parallel} \times B \right]$$



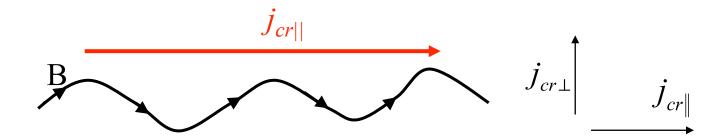
$$j_{cr\perp} \times B$$
 drives Alfven waves

Perturbed cosmic ray current

$$i \times R$$

Non-resonant instability

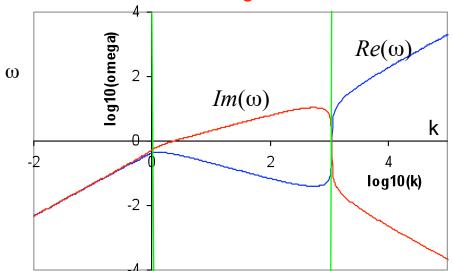
$$\rho \frac{\partial u}{\partial t} = -\nabla p - \frac{1}{\mu_0} B \times (\nabla \times B) - j_{cr\perp} \times B - j_{cr\parallel} \times B$$



 $j_{cr\parallel} \times B$ dominates for shock acceleration in SNR

Perturbed magnetic field

Dispersion relation



k in units of r_g^{-1} ω in units of ${v_S}^2/cr_g$

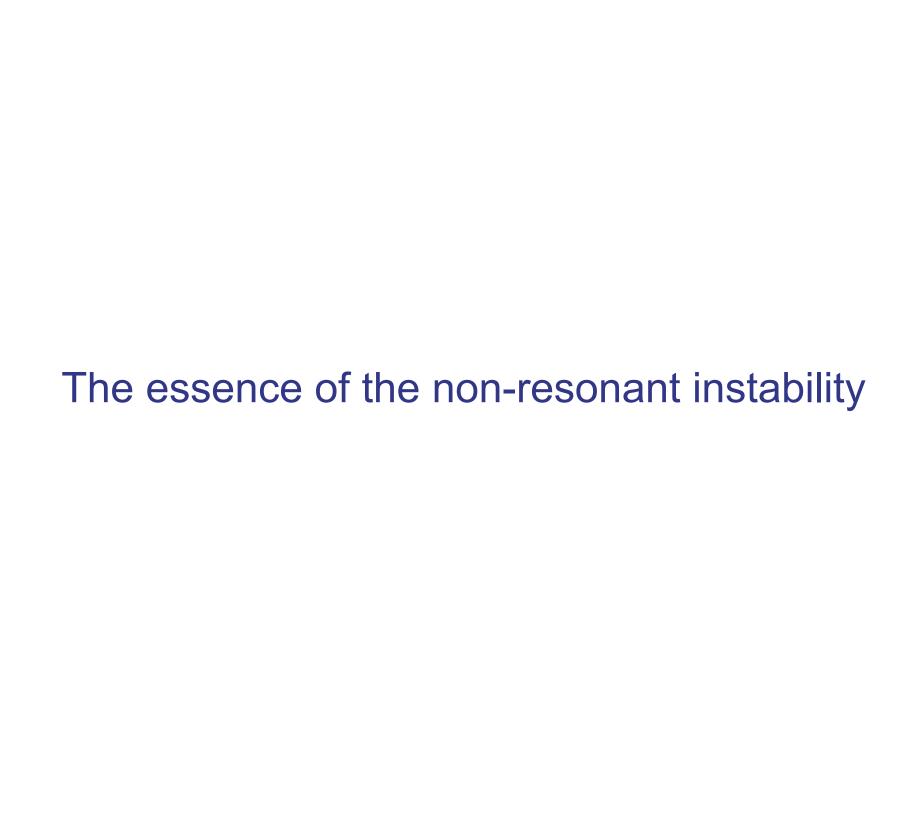
Wavelength longer than Larmor radius CR follow field lines. jxB drives weak instability

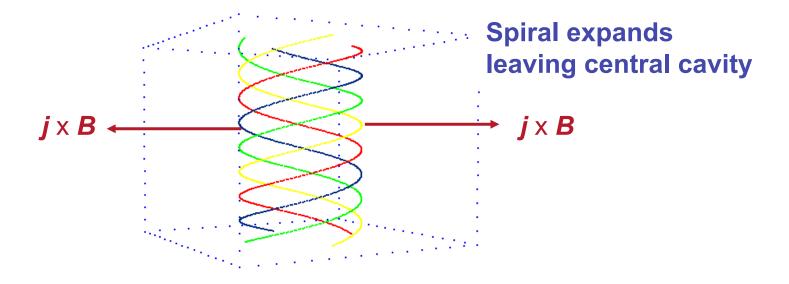
$$\rho \frac{d\mathbf{u}}{dt} = -\mathbf{j}_{CR} \times \mathbf{B}$$

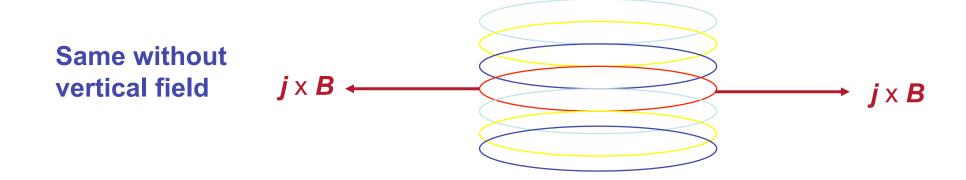
$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B})$$

$$\gamma = \left(\frac{kB_0 j_{CR}}{\rho}\right)^{1/2}$$

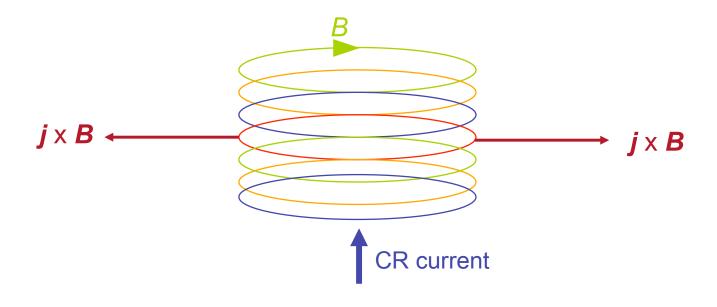
Magnetic tension inhibits instability







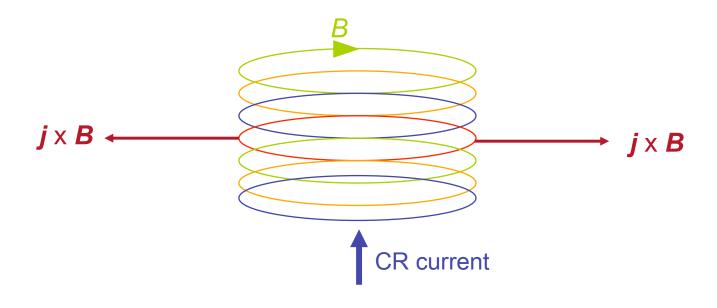
Simplest form: expanding loops of B

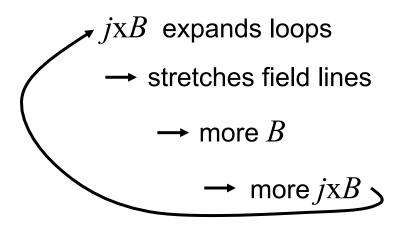


jxB expands loops

- → stretches field lines
 - \rightarrow more B
 - \rightarrow more jxB

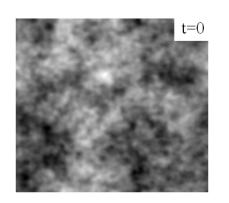
Simplest form: expanding loops of B

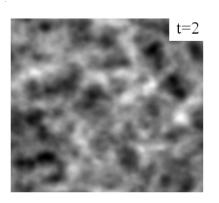


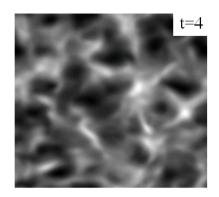


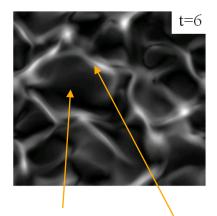
Non-linear growth – expanding loops

Slices through |B| - time sequence (fixed CR current)



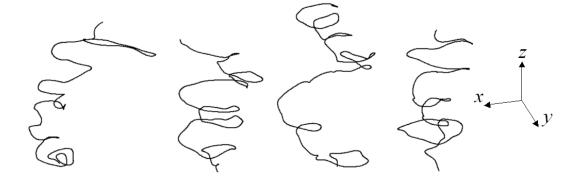


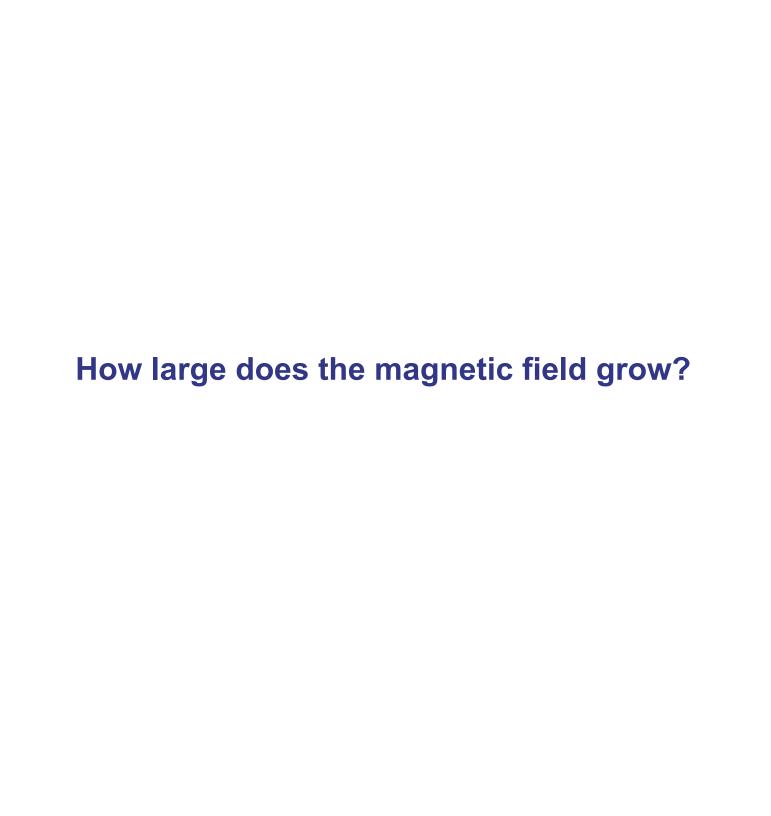




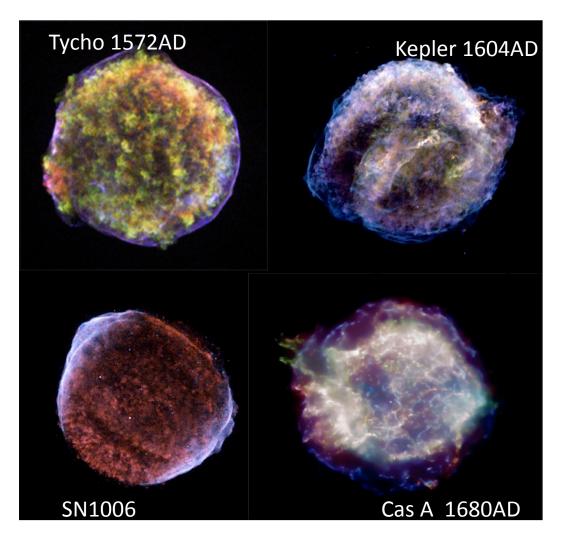
Cavities and walls in |B| & ρ

Field lines: wandering spirals



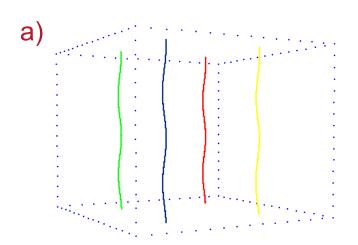


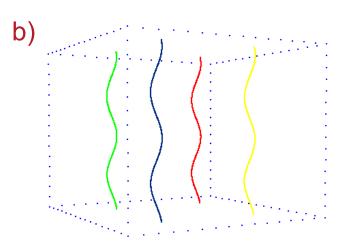
Historical SNR



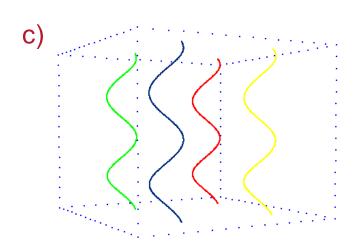
Chandra observations

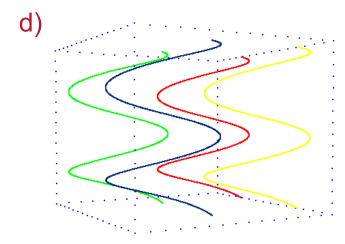
Instability growth





No reason for non-linear saturation of a single mode





Saturation (back of envelope)

Magnetic field grows until

1)
$$\frac{1}{\mu_0} B \times (\nabla \times B) \approx j_{CR} \times B$$

Magnetic tension CR driving force

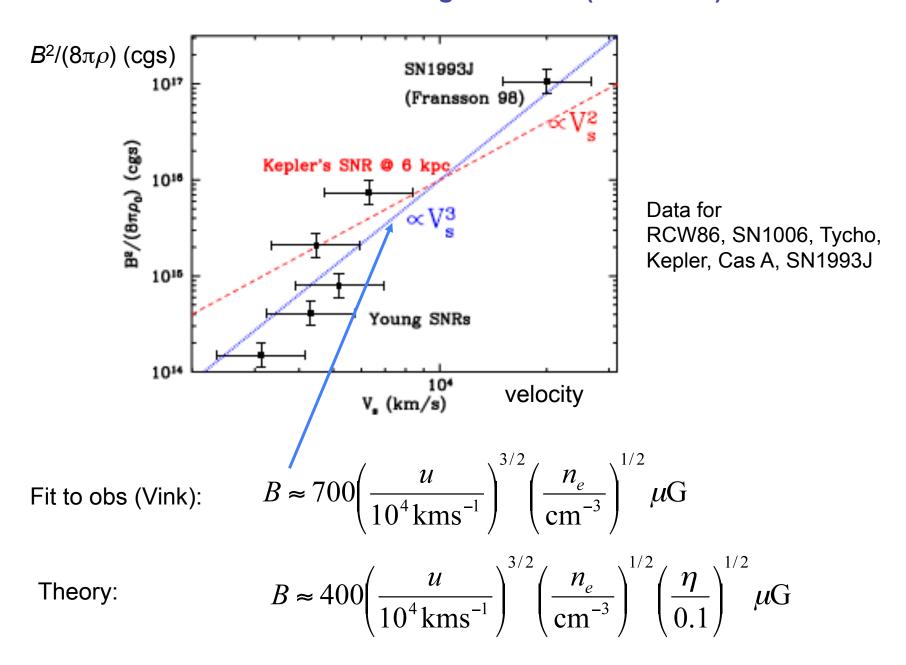
$$\frac{p}{eB} \qquad \approx \qquad L$$

CR Larmor radius scalelength

Set
$$\nabla = \frac{1}{L}$$
 and eliminate L between 1) & 2)

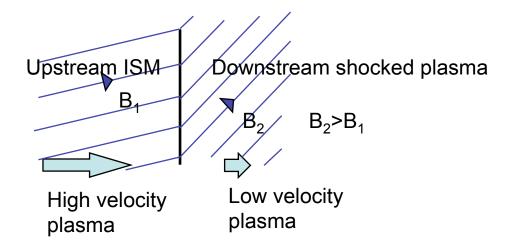
$$\frac{B^2}{\mu_0} \approx \frac{pj_{CR}}{e} \approx \text{efficiency} \times \frac{\rho u_{shock}^3}{c}$$

Inferred downstream magnetic field (Vink 2008)



The cosmic ray spectrum revision from p^{-4}

Shock acceleration energy spectrum: loss rate



CR cross from upstream to downstream at rate $n_{shock}c/4$

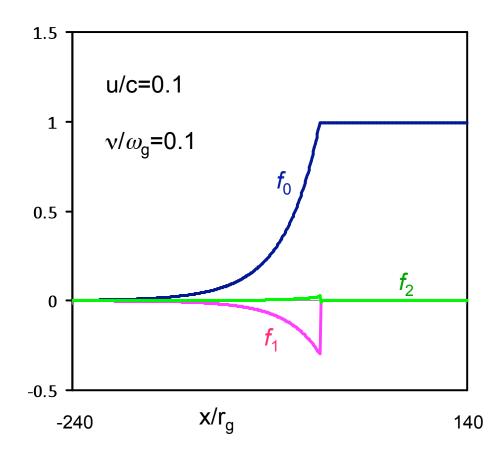
CR carried away downstream at rate = $n_{\text{downstream}} v_{\text{s}}/4$

Fraction lost at each shock crossing

$$\frac{\Delta n}{n} = -\frac{\mathbf{V}_s}{c} \frac{n_{downstream}}{n_{shock}}$$

In diffusive limit $n_{downstream} = n_{shock}$

Parallel shock



Vlasov-Fokker-Planck (VFP) analysis for oblique magnetic field

with Klara Schure & Brian Reville

$$\frac{\partial f}{\partial t} + (\mathbf{v}_x + u) \frac{\partial f}{\partial x} - \frac{\partial u}{\partial x} p_x \frac{\partial f}{\partial p_x} + e\mathbf{v} \times \mathbf{B} \cdot \frac{\partial f}{\partial \mathbf{p}} = C(f)$$

Extra term

Equivalent form of solution for small u/c

$$f = f_0(p) + f_x(p) \frac{p_x}{p} + f_y(p) \frac{p_y}{p} + f_z(p) \frac{p_z}{p}$$

Upstream solution

Upstream solution
$$f_x = -\frac{3u_1}{c} f_0 \qquad f_y = \frac{3u_1}{c} \frac{v\omega_z}{v^2 + \omega_x^2} f_0 \qquad f_z = \frac{3u_1}{c} \frac{\omega_z^2}{v^2 + \omega_x^2} f_0$$
Downstream solution
$$f_x = f_y = f_z = 0$$

$$\omega = \frac{e\mathbf{B}}{\gamma m_p}$$

Cannot match $f_{v} \, \, \& \, \, f_{z}$ across the shock

$$\frac{\partial f}{\partial t} + (\mathbf{v}_x + u) \frac{\partial f}{\partial x} - \frac{\partial u}{\partial x} p_x \frac{\partial f}{\partial p_x} + e\mathbf{v} \times \mathbf{B} \cdot \frac{\partial f}{\partial \mathbf{p}} = C(f)$$

The of solution for small u/a .

Extra term

Equivalent form of solution for small u/c

$$f = f_0(p) + f_x(p) \frac{p_x}{p} + f_y(p) \frac{p_y}{p} + f_z(p) \frac{p_z}{p}$$
NOT VALID SOLUTION

Upstream solution

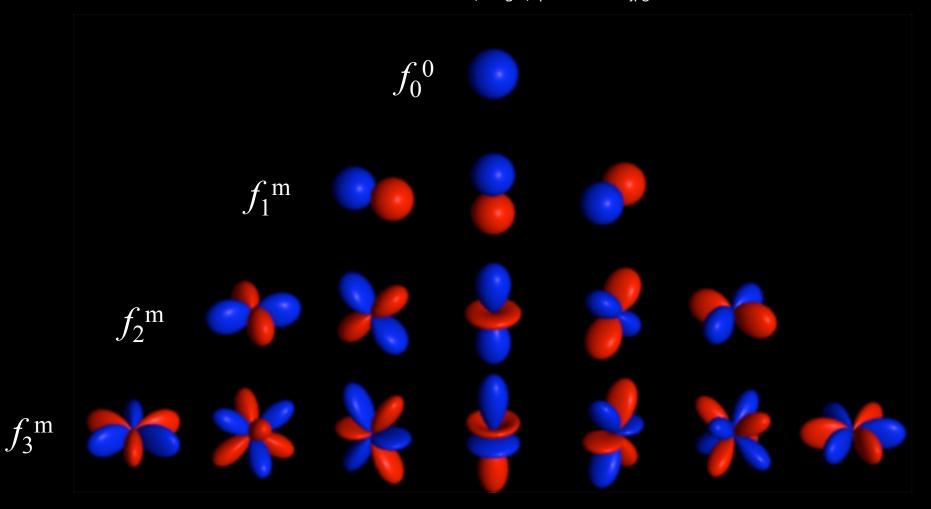
Upstream solution
$$f_x = -\frac{3u_1}{c} f_0 \qquad f_y = \frac{3u_1}{c} \frac{v\omega_z}{v^2 + \omega_x^2} f_0 \qquad f_z = \frac{3u_1}{c} \frac{\omega_z^2}{v^2 + \omega_x^2} f_0$$
Downstream solution
$$f_x = f_y = f_z = 0$$

$$\omega = \frac{e\mathbf{B}}{\gamma m_n}$$

Cannot match $f_{v} \, \, \& \, \, f_{z}$ across the shock

Expand in spherical harmonics

www.trinnov-audio.com/images/sphericalHarm.jpg



$$f(x,\mathbf{p},t) = \sum_{l,m} f_l^m (x,|\mathbf{p}|,t) P_l^m (\cos \theta) \exp(im\phi)$$

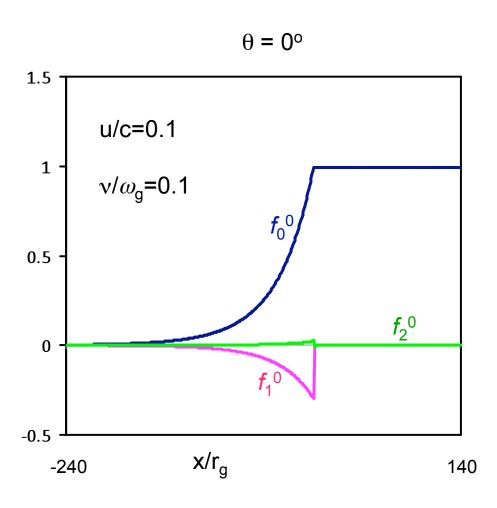
Equation for evolution of each spherical harmonic $f(x, \mathbf{p}, t) = \sum_{l,m} f_l^m(x, p, t) P_l^m(\cos \theta) e^{im\phi}$

$$\begin{split} \frac{\partial f_{l}^{m}}{\partial t} + u \frac{\partial f_{l}^{m}}{\partial x} + c \left[\frac{l-m}{2l-1} \frac{\partial f_{l-1}^{m}}{\partial x} + \frac{l+m+1}{2l+3} \frac{\partial f_{l+1}^{m}}{\partial x} \right] \\ + im \frac{ceB_{x}}{p} f_{l}^{m} + \frac{ceB_{z}}{2p} \beta_{l}^{m} \\ - p \frac{\partial u}{\partial x} \left[\frac{(l-m)(l-m-1)}{(2l-3)(2l-1)} \left(\frac{\partial f_{l-2}^{m}}{\partial p} - (l-2) \frac{f_{l-2}^{m}}{p} \right) \right. \\ + \frac{(l-m)(l+m)}{(2l-1)(2l+1)} \left(\frac{\partial f_{l}^{m}}{\partial p} + (l+1) \frac{f_{l}^{m}}{p} \right) \\ + \frac{(l-m+1)(l+m+1)}{(2l+1)(2l+3)} \left(\frac{\partial f_{l+2}^{m}}{\partial p} - l \frac{f_{l+2}^{m}}{p} \right) \right. \\ + \frac{(l+m+1)(l+m+2)}{(2l+3)(2l+5)} \left(\frac{\partial f_{l+2}^{m}}{\partial p} + (l+3) \frac{f_{l+2}^{m}}{p} \right) \right] \\ - pu \frac{\partial u}{\partial x} \left[\frac{l-m}{2l-1} \left(\frac{\partial f_{l-1}^{m}}{\partial p} - (l-1) \frac{f_{l-1}^{m}}{p} \right) \right. \\ + \frac{l+m+1}{2l+3} \left(\frac{\partial f_{l+1}^{m}}{\partial p} + (l+2) \frac{f_{l+1}^{m}}{p} \right) \right] \\ = -\frac{l(l+1)}{2} \nu f_{l}^{m} \end{split}$$

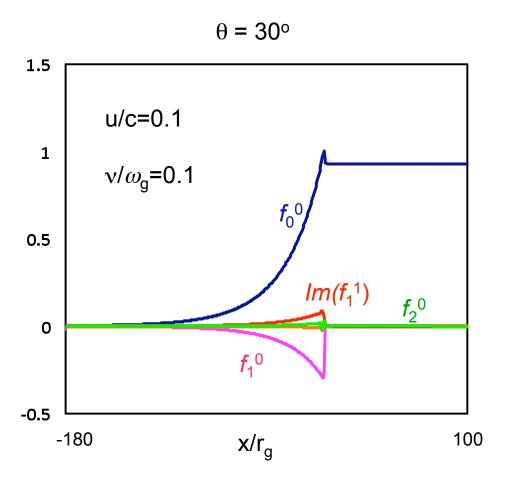
Solve numerically

where $\beta_l^m = (l-m)(l+m+1)f_l^{m+1} - f_l^{m-1}$ for m > 0 and $\beta_l^0 = 2\Re(f_l^1)$.

Parallel shock

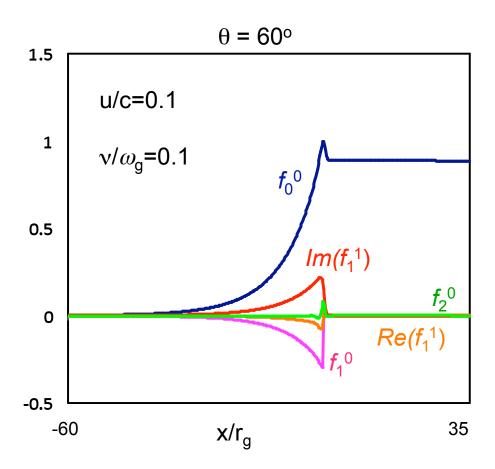


Oblique shock (nearly parallel)



Density spike at shock as seen by
Ostrowski MNRAS **249** 551 (1991)
Ruffalo, ApJ **515** 787 (1999)
Gieseler, Kirk, Heavens & Achterberg A&A **345** 298 (1999)

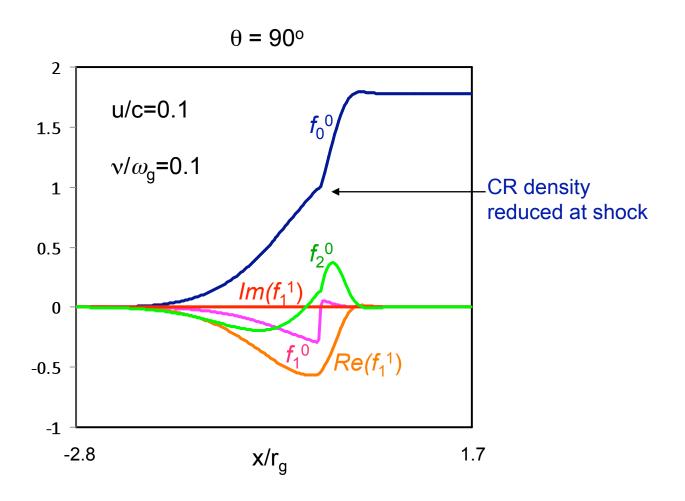
More perpendicular, less parallel



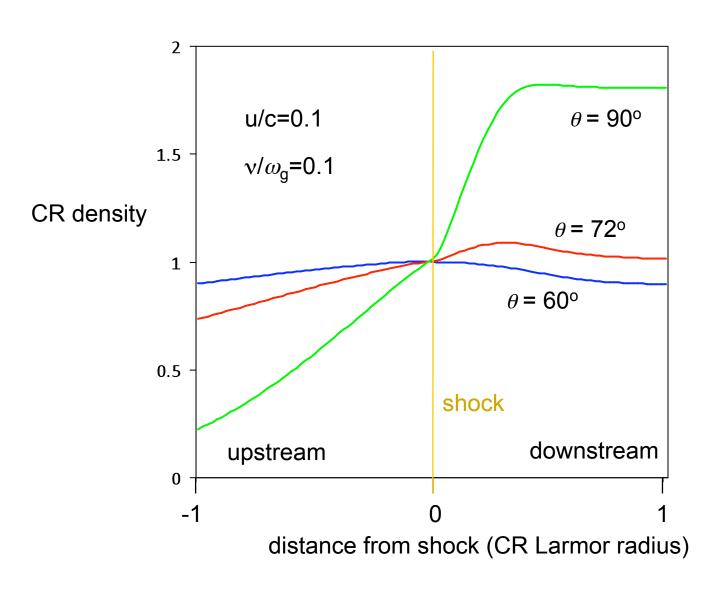
 $Re(f_1^1)$ represents cross-field drift

 $Im(f_1^1)$ represents drift along oblique field lines

Peperpendicular shock

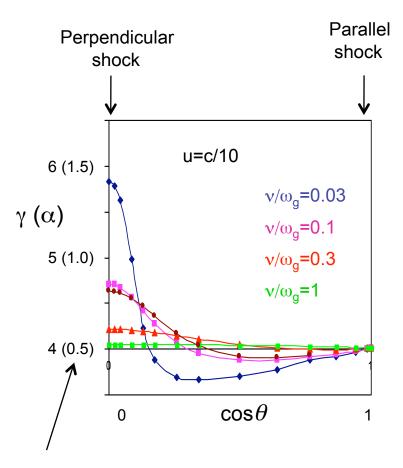


CR density profiles near shock



Spectral index plotted against shock obliquity

Shock compression x4 in all cases

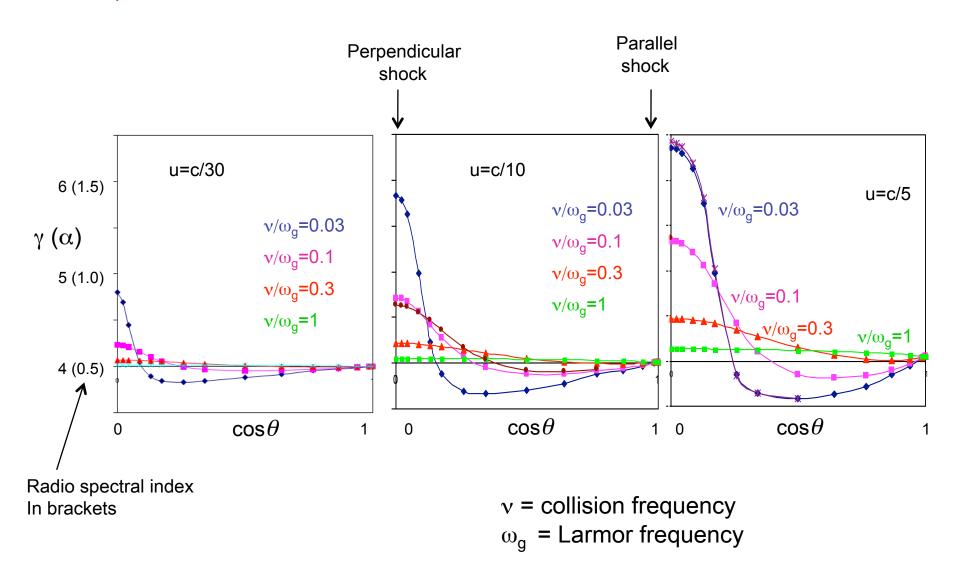


Radio spectral index In brackets

 ν = collision frequency $\omega_{\rm g}$ = Larmor frequency

Spectral index plotted against shock obliquity

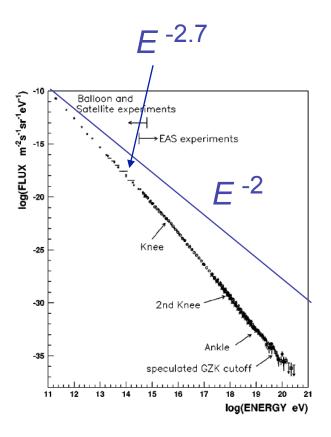
Shock compression x4 in all cases



Observations

Cosmic Ray spectrum arriving at earth

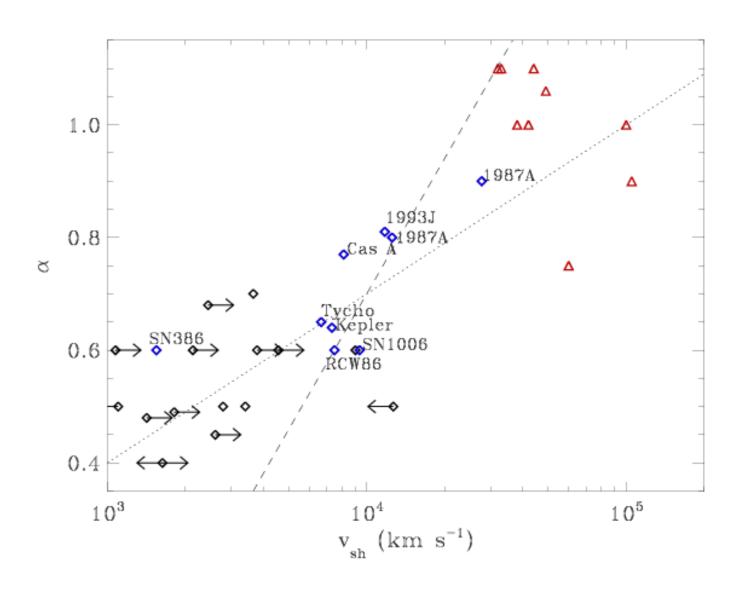
(Nagano & Watson 2000)



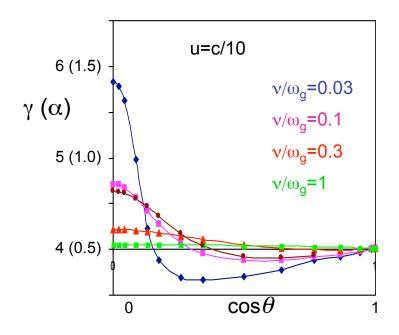
Leakage from galaxy accounts for some of difference (Hillas 2005)

Observed radio spectral index v. mean expansion velocity

(Klara Schure following Glushak 1985)



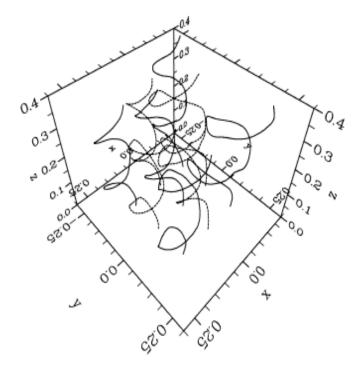
Spectral steepening suggests quasi-perpendicular shocks



For random field orientation, steepening & flattening nearly cancel out

Steepening at high velocity might be due to

- 1) expansion into Parker spiral
- 2) magnetic field amplification jxB stretches field perpendicular to shock normal



SNR morphology: spectral steepening/flattening

SN1006 (Chandra) CR electrons (10-100TeV)



Quasi-perpendicular shocks accelerate fewer CR to high energy

What we know, and what we know we don't know

What we know (but not totally proved observationally)

- Galactic CR are accelerated to 10¹⁵ eV by diffusive shock acceleration by SNR
- Streaming CR amplify the magnetic field which confines CR near shock
- CR spectra are often steeper than p^{-4} (E^{-2}): non-linear effects, quasi-perpendicular shocks

What we don't know

- How CR reach 10¹⁶ -10¹⁷eV
- When CR are accelerated to what energy at different stages of SNR evolution
- How CR escape SNR without losing energy adiabatically
- When & where non-linear effects are important
- Why typically the spectrum is flatter than p^{-4} in older SNR
- Why is the galactic CR spectrum so straight?
- Whether second order Fermi acceleration contributes substantially
- · Whether perpendicular shocks are good injectors of low energy CR
- How the above applies extra-galactically the origin of 10²⁰eV CR