Gamma-Ray Bursts

E.V. Derishev

Institute of Applied Physics, Nizhny Novgorod, Russia

Basic facts

- Unexpectedly discovered in 1967
- Rate ~ 1000 per year
- Isotropic energy release $\sim 10^{52} \mathrm{erg}$

$$
\text { (up to } \sim 10^{55} \mathrm{erg}, \text { down to } \sim 10^{49} \mathrm{erg} \text {) }
$$

- Duration: two groups

$$
\sim 0.3 \mathrm{~s} \text { (short bursts) and } \sim 50 \mathrm{~s} \text { (long bursts) }
$$

- Spectrum: nonthermal, peaks typically in $10 \mathrm{keV}-1 \mathrm{MeV}$ range
- Redshifts: typically ~ 1, up to 8

Long and short bursts

Data from BATSE 4B catalog at http://gammaray.msfc.nasa.gov/batse/grb/catalog/4b

Gravitational lensing: twin bursts

Deflection angle for a light beam

$$
\theta_{L}=\frac{4 G M}{d c^{2}}=\frac{2 R_{g}}{d}
$$

Einstein's radius $\quad R_{E} \sim \sqrt{R_{g} D / 2}$
Time delay between the images
$t_{L} \sim \theta_{L}^{2} D / c \sim R_{g} / c$

- Same spectra
- different brightness
- (possibly) different lightcurves
- delay ~ days
- probability of lensing $\sim \Omega_{L} \sim 0.1 \%$

Prompt emission lightcurves

Optical afterglow

- First detected in 1997 (GRB970228)
- Absorption lines in spectra \Rightarrow redshifts
- Associated with galaxies and (some GRBs) with supernovae

Radio afterglow: twinkling

4 weeks after the burst:
linear size $\sim 10^{17} \mathrm{~cm}$
apparent expansion speed $\sim c$

Light curves of the radio afterglow of GRB 970508 at 4.86 and 1.43 GHz , compared to the predictions of the adiabatic firereball model
Waxman, Kulkarni \& Frail, ApJ 497 (1998)

X-ray afterglow lightcurves

Swift/XRT data of GRB 110625A

Swift/XRT data of GRB 110520A

Data from http://www.swift.ac.uk/xrt_curves

Afterglow lightcurves

Figure from Racusin et al. arXiv:1106.2469 (2011)

External shock deceleration: afterglows

Blandford \& McKee 1976

Adiabatic shock:
Swept-up mass $\quad M=\frac{4 \pi}{3} R^{3} \rho_{\text {ext }}$
Energy $\quad E_{G R B} \sim M c^{2} \Gamma^{2} \approx$ const
Observer's time $\quad t_{o b s} \sim R /\left(\Gamma^{2} c\right)$

$$
\Gamma \propto R^{-3 / 2} \propto t_{o b s}^{-3 / 8} \quad R \propto t_{o b s}^{1 / 4}
$$

Breaks in afterglow lightcurves

Top: X-ray light curve.
Bottom: combined Rc-band data set.
Guelbenzu et al. A\&A 531 (2011)

Jet breaks

Rhoads 1997

Jet deceleration becomes much more efficient when

$$
\Gamma<\theta_{i n}^{-1}
$$

Swept-up mass $\quad M=\frac{4 \pi}{3} R^{3} \rho_{e x t}$
Energy $\quad E_{\text {iso }} \sim M c^{2} \Gamma^{2} \approx$ const
Observer's time $\quad t_{o b s} \sim R /\left(\Gamma^{2} c\right)$
$R_{b r} \sim\left(\frac{E_{i s o} \theta_{i n}^{2}}{\rho_{e x t} c^{2}}\right)^{1 / 3}$

Broad-band GRB spectrum

Figure from Abdo et al. Science 323 (2009)

Lorentz transformations

- Angles: $\quad \cos \theta=\frac{\beta-\cos \theta^{\prime}}{1-\beta \cos \theta^{\prime}} ; \quad \cos \theta^{\prime}=\frac{\beta-\cos \theta}{1-\beta \cos \theta}$
- Intensity: $\quad I_{\omega}^{\prime}\left(\omega^{\prime}\right)=\delta^{3} \times I_{\omega}(\omega)$
- Frequency: $\quad \omega^{\prime}=\delta \times \omega$

Comoving frame
Observer's frame
$\delta=\gamma(1-\beta \cos \theta)$ \qquad
Doppler-factor.

For small angles approximately

$$
\theta \simeq \frac{2}{\sqrt{\left(\gamma \theta^{\prime}\right)^{2}+1}} \quad \text { and } \quad \delta \simeq \frac{(\gamma \theta)^{2}+1}{2 \gamma}
$$

Two-photon absorption

Baring \& Harding 1995

Two-photon opacity

$$
\tau_{\gamma \gamma}=\sigma_{\gamma \gamma} n_{p h}^{\prime} R^{\prime}<1
$$

Delayed high-energy emission

In some cases (GRB940217)
GeV emission lasts
hours after the burst

Figure from Abdo et al. Science 323 (2009)

Low-energy spectral indices

Figure from Preece et al. ApJ 506 (1998)

General requirements to GRB models

- Should produce large energy release and luminosity
- Should explain very rapid (ms scale) variability
- Central engines should be capable of launching highly relativistic outflows
- The emitted radiation should be very broad-band (therefore - nonthermal)

Merger scenario (short GRBs)

B. Paczynski

Starting point:

Two neutron stars or a neutron star and a black hole in a close binary

Loss of energy for gravitational radiation eventually causes merger

Features:

Not connected with star-forming regions

Burst of grawitational waves at the time of GRB

Collapsar scenario (long GRBs)

S. Woosley

Starting point:

A rapidly rotating Wolf-Rayet star

The star undergoes core-collapse, forming a black hole surrounded by a massive accretion torus

Features:

Can occur only in star-forming regions

Can be a special type of supernovae

Main characters in GRB play

- Magnetic fields
either need to be generated, likely by Weibel instability Medvedev \& Loeb 1999
or need to be dissipated, if the jets are Pointing-dominated
- Energetic charged particles
likely electrons and positrons, by maybe protons
- Neutrons
produced in many ways, being stable over GRB duration
Derishev et al. 1999

Sources of free neutrons

1. thermal dissociation of nuclei
${ }^{4} \mathrm{He}+p \rightarrow 3 p+2 n \quad$ (requires $\quad T>0.7 \mathrm{MeV}$)
${ }^{4} \mathrm{He}$

n
${ }^{4} \mathrm{He}-$ helium nucleus
$\quad p-$ proton
$n-$ neutron

Sources of free neutrons

2. electron capture

$$
\begin{array}{r}
p+e^{-} \rightarrow n+\nu_{e} \quad \text { requires } \quad \rho>10^{8} \mathrm{~g} / \mathrm{cm}^{3} \\
\text { or } \quad T \gtrsim 5 \mathrm{MeV}
\end{array}
$$

Sources of free neutrons

3. inverse beta-decay

$$
\begin{array}{r}
p+\overline{\nu_{e}} \rightarrow n+e^{+} \quad \sigma=9.3 \times 10^{-44} \mathrm{~cm}^{2}\left(\frac{\varepsilon_{\nu}}{1 \mathrm{MeV}}\right)^{2} \\
\varepsilon_{\nu} \gg\left(m_{n}-m_{p}\right) c^{2}
\end{array}
$$

Sources of free neutrons

4. photopion reactions

$$
p+\gamma \rightarrow n+\pi^{+} \quad \text { compactness } \quad \ell \gtrsim \frac{10^{7}}{\Gamma_{p}}
$$

$$
\begin{aligned}
& \pi^{-}-\text {pion } \\
& \gamma-\text { photon } \\
& \Gamma_{p}-\text { Lorentz-factor } \\
& \text { of a proton }
\end{aligned}
$$

Proton-neutron decoupling

Distance R
$p+n \rightarrow N+N^{\prime}+X$
$X=\pi^{-}, \pi^{+}, \pi^{0} \quad$ with roughly equal probabilities

GRB evolution over distance

- Secondary dissociation of helium
- Appearance of for-running neutrons
- High-energy neutrino emission
- Electromagnetic cascade; photosphere shift and production of hard gamma-rays
- Secondary external shock(s) due to decay of slow neutrons

Radiation mechanisms

electrons

- Synchrotron radiation
undulator radiation
- Inverse Compton radiation
- Bremsstrahlung

$$
L_{s y}=\frac{4}{3} \gamma^{2} \sigma_{T} c \frac{B^{2}}{8 \pi} \quad \varepsilon_{s y} \sim \gamma^{2} \frac{\hbar e B}{m_{e} c}
$$

When coupled to diffusive shock acceleration, $\varepsilon_{s y} \lesssim m_{e} c^{2} / \alpha_{f} \sim 70 \mathrm{MeV}$
due to radiative losses, that limit acceleration

protons

- Synchrotron radiation
- Inelastic nucleon collisions
- Coulomb Iosses

Radiation mechanisms

electrons

- Synchrotron radiation undulator radiation
- Inverse Compton radiation
- Bremsstrahlung

protons

- Synchrotron radiation
- Inelastic nucleon collisions

Toptygin \& Fleishman 1987, Medvedev 2000

$$
L_{u n d}=\frac{4}{3} \gamma^{2} \sigma_{T} c \frac{B^{2}}{8 \pi} \quad \varepsilon_{u n d} \sim \gamma^{2} \frac{\hbar c}{d}
$$

differs from synchrotron if $d<m_{e} c^{2} /(e B)$

Radiation mechanisms

electrons

- Synchrotron radiation undulator radiation
- Inverse Compton radiation
- Bremsstrahlung

protons

- Synchrotron radiation
- Inelastic nucleon collisions

Thomson regime $\quad\left(\varepsilon_{p h} \ll m_{e} c^{2} / \gamma\right)$:
$L_{I C}=\frac{4}{3} \gamma^{2} \sigma_{T} c w_{p h} \quad \varepsilon_{I C} \sim \gamma^{2} \varepsilon_{p h}$

Klein-Nishina regime $\quad\left(\varepsilon_{p h} \gtrsim m_{e} c^{2} / \gamma\right)$:

$$
L_{I C}<\frac{4}{3} \gamma^{2} \sigma_{T} c w_{p h} \quad \varepsilon_{I C} \sim \gamma m_{e} c^{2}
$$

$\varepsilon_{p h}$ - background photons' energy
$w_{p h}$ - background radiation energy density

- Coulomb Iosses

Interlude:

Two-photon absorption

Two-photon absorption

Optical depth for two-photon absorption

$$
\tau_{\gamma \gamma}(\omega) \simeq \sigma_{\gamma \gamma} N_{p h}\left(\omega_{*}\right) R
$$

Inverse Compton energy losses per particle

$$
\dot{\varepsilon} \simeq \frac{1}{2} \varepsilon \sigma_{e \gamma} N_{p h}\left(\omega_{*}\right) c
$$

Under assumption of high radiation efficiency ($\dot{\varepsilon}>\varepsilon / t_{v}$) the optical depth of a source with size $R \simeq c t_{v}$ is

$$
\tau_{\gamma \gamma}>2 \frac{\sigma_{\gamma \gamma}(\varepsilon / 2)}{\sigma_{e \gamma}(\varepsilon)} \gg 1
$$

$N_{p h}\left(\omega_{*}\right) \quad-\quad$ number density of photons with frequency $\sim \omega_{*}$

Klein-Nishina effect

Inverse Compton power

$$
P_{I C}=c \int_{0}^{\infty} \sigma_{t r}\left(\omega^{\prime}\right) W_{e m, \omega^{\prime}}^{\prime} \mathrm{d} \omega^{\prime}
$$

$\sigma_{t r}(\omega) \quad-\quad$ transport cross-section

High-energy limit $\left(\hbar \omega^{\prime} \gg m_{e} c^{2}\right)$

$$
\left\langle\hbar \omega_{s c}\right\rangle \sim \frac{1}{2} \gamma m_{e} c^{2} \quad \sigma_{t r} \propto \omega^{-2} \ln \omega
$$

In most cases, a simple approximation works

$$
P_{I C}=\frac{4}{3} \gamma^{2} \sigma_{T} c \int_{0}^{\frac{m_{e} c^{2}}{\gamma \hbar}} W_{e m, \omega} \mathrm{~d} \omega
$$

Radiation mechanisms

electrons

- Synchrotron radiation undulator radiation
- Inverse Compton radiation
- Bremsstrahlung

protons

- Synchrotron radiation
- Inelastic nucleon collisions
- Coulomb Iosses
emission power density:
$\dot{w}_{f f}=\frac{2}{\pi} \alpha_{f} \sigma_{T} c n_{e}^{2} \sqrt{T m_{e} c^{2}} G\left(n_{e}, T\right)$

At an optical depth τ
each electron on average radiates
$\frac{w_{f f}}{n_{e}}=\frac{2}{\pi} \alpha_{f} \tau \sqrt{T m_{e} c^{2}} G\left(n_{e}, T\right)$
inefficient unless $T \lesssim \alpha_{f}^{2} m_{e} c^{2} \sim 25 \mathrm{eV}$

Radiation mechanisms

electrons

- Synchrotron radiation undulator radiation
- Inverse Compton radiation
- Bremsstrahlung

protons

- Synchrotron radiation
- Inelastic nucleon collisions
- Coulomb Iosses

At a given energy

$$
L_{s y}^{(p)}=\left(\frac{m_{e}}{m_{p}}\right)^{4} L_{s y}^{(e)} \sim 10^{-13} L_{s y}^{(e)}
$$

Although relatively slow, the mechanism works in multi-GeV range!

Radiation mechanisms

electrons

- Synchrotron radiation
undulator radiation
- Inverse Compton radiation
- Bremsstrahlung

protons

- Synchrotron radiation
- Inelastic nucleon collisions
- Coulomb losses
end up with energetic electrons, which radiate by either of the electron mechanisms

The synchrotron-self-Compton model

Fast cooling regime

Continuity equation

$$
\frac{\partial N}{\partial t}+\operatorname{div}(\dot{\gamma} N)=f(\gamma)
$$

$f(\gamma)$ - injection function, for accelerated particles usually $\quad f(\gamma) \propto \gamma^{-s}$, where $s \simeq 2$
$N(\gamma)$ - electron distribution function
gives stationary solution $\quad N(\gamma)=-\frac{1}{\dot{\gamma}} \int_{\gamma}^{\infty} f\left(\gamma^{\prime}\right) d \gamma^{\prime}$,
the corresponding spectrum is
(under the condition $\omega \propto \gamma^{x}$)

$$
\omega L_{\omega} \propto \frac{d L}{d \ln \gamma} \propto \gamma \eta \int_{\gamma}^{\infty} f\left(\gamma^{\prime}\right) d \gamma^{\prime}
$$

$\eta(\gamma)$ - fraction of electron's energy, which goes into observed radiation

Low-energy spectral indices

Fast cooling: $\quad \alpha<-1.5$

Synchrotron from a single electron: $\quad \alpha<-2 / 3$

Figure from Preece et al. ApJ 506 (1998)

Equation for synchrotron efficiency

$$
\frac{1}{\eta(x)}=1+\mathcal{K} \int_{0}^{1 / \sqrt{x}} p\left(x^{\prime}\right) \eta\left(x^{\prime}\right) \mathrm{d} x^{\prime}
$$

$\eta(\gamma)=\frac{\mathcal{L}_{\text {sy }}}{\mathcal{L}_{\text {ic }}+\mathcal{L}_{\text {sy }}}$ - synchrotron efficiency
$\mathcal{L}_{\text {sy }} \quad \mathcal{L}_{\text {ic }}$ - synchrotron and Compton powers of an electron
$\mathcal{K}=\tau_{\mathrm{ic}} /\left(\bar{\eta} x_{\mathrm{i}}\right)$ - Compton potential
$x=\gamma / \gamma_{0}-$ normalized Lorentz-factor of electrons
$p(x)$ - probability that an electron is injected with the Lorentz factor $>x$
$\tau_{\text {ic }}-$ optical depth for Comptonization $(\approx$ Compton y parameter $)$
$\gamma_{0}=\left(\frac{2 m_{e}^{2} e^{3}}{\hbar e B}\right)^{1 / 3} \simeq\left(\frac{10^{14} \mathrm{G}}{B}\right)^{1 / 3} ; \quad \gamma_{\mathrm{i}}=\int_{1}^{\infty} p(\gamma) \mathrm{d} \gamma+1 ; \quad \bar{\eta}=\frac{1}{\gamma_{\mathrm{i}}} \int_{1}^{\infty} p \eta \mathrm{~d} \gamma$
\checkmark Electron distribution function: $f(\gamma) \propto \eta(\gamma) p(\gamma) \gamma^{-2}$
\checkmark Spectrum of synchrotron component: $\nu F_{\nu}^{\text {sy }} \propto x p(x) \eta(x), \quad x \propto \sqrt{\nu}$
\checkmark Spectrum of IC component: $\nu F_{\nu}^{\text {ic }} \propto x p(x)(1-\eta)$, where $x \propto \nu$

Solutions for different Compton potentials

Some hints for physical parameters in GRBs

Magnetic field in the emitting region $\quad B \sim \frac{E_{52}^{1 / 2}}{t_{1}^{3 / 2} \tau_{\mathrm{ic}}^{1 / 2}} \mathcal{D} \frac{10^{9}}{\Gamma^{3}} G$
Lorentz factor of accelerated electrons

Inverse Compton peak at

Fraction of inverse Compton Iosses
$\gamma_{\mathrm{i}} \sim 200 \tau_{\mathrm{ic}}^{1 / 4} \Gamma \frac{t_{1}^{3 / 4}}{E_{52}^{1 / 4}} \mathcal{D}^{-1 / 2}$
$\varepsilon_{\text {ic }} \sim 10^{-4} \Gamma^{2} \frac{t_{1}^{3 / 4}}{E_{52}^{1 / 4}} \mathcal{D}^{-1 / 2} \mathrm{TeV}$
$\delta E_{\text {ic }} \gtrsim\left[0.01 \frac{E_{52}^{1 / 4}}{t_{1}^{3 / 4}} \mathcal{D}^{1 / 2}\right]^{\alpha}$

```
\mathcal{D}=\frac{\mathrm{ burst duration }}{\mathrm{ variability timescale }}\mathrm{ - variability parameter}
t
E52 - burst energy in units 1052 erg
\alpha (0<\alpha<1) - low-frequency spectral index
```

From the condition $\delta E_{\text {ic }}<0.5$ follows that:

$$
\tau_{\text {ic }} \sim 1 \div 10
$$

$$
\text { burst duration } t_{\text {grb }} \gtrsim 0.03 \mathrm{~s}
$$

$$
\text { variability timescale } \gtrsim 10^{-3} \mathrm{~s}
$$

What limits acceleration?

Particle escape from the accelerator

Degradation of particles' energy

- Sinchrotron radiation
- Inelastic collisions
- Inverse Compton losses (for electrons)
- Photomeson interactions and creation of $e^{-} e^{+}$pairs (for protons and nuclei)

The probability of photon-induced reaction is usually small, <<1

How small has to be "small" to become dynamically negligible?

For a non-relativistic shock, a probability $\ll 1$
is always small

For a relativistic flow, the answer is either $\ll 1$ or $\ll 1 / \Gamma^{2}$, depending on what you are talking about

If some energy leaks from downstream to upstream and mixes up with the upstream particles, we feed back to the shock Γ^{2} time the initial energy!
Γ is the Lorentz factor of the flow

When "small" is large (standard acceleration)

$\theta \sim 2 / \Gamma$

The distribution of accelerated particles remains highly collimated.

The energy gain factor $g=(1 / 2)(\Gamma \theta)^{2} \simeq 2$
The probability of particle injection back to upstream must be ~ 1 to get efficient acceleration. The actual probability depends on the (unknown) magnetic field geometry.

Favorable geometry gives, e.g., $\frac{\mathrm{d} N}{\mathrm{~d} \varepsilon} \propto \varepsilon^{-\frac{22}{9}}$ (Keshet \& Waxman, PRL 2005)
"Realistic" geometry leads to very soft particle distributions, with energy concentrated near $\Gamma^{2} m c^{2}$ (Niemiec \& Ostrowski, ApJ 2006;

When "small" is REALLY small

Full isotropization in the upstream ($\theta \sim 1$) gives the energy gain factor $g=\frac{1}{2}(\Gamma \theta)^{2} \sim \Gamma^{2}$ in each shock-crossing cycle

> Photon-induced reactions reversibly
> "convert" accelerated particles to neutrals
> $\Rightarrow \quad$ Converter acceleration mechanism

Derishev, Aharonian, Kocharovsky \&
Kocharovsky, PRD 2003;
Stern, MNRAS 2003

Conversion to neutrals for electrons/positrons

Conversion to neutrals for protons

Emerging particle distribution

Distinctive features of the converter mechanism

- Protons are accelerated, but not nuclei
- Accelerated particles reach supercritical energies, so that the spectrum of their synchrotron emission extends to much higher frequencies (up to Γ^{2} times higher compared to the standard acceleration mechanism)
- Broadening of beam pattern (up to becoming nearly isotropic) for high-energy emission in the sub-GeV - TeV range.
prolonged GeV emission from Gamma-Ray Bursts $=$ geometrically retarded off-axis emission?

Changes in the beam-pattern

Derishev, Aharonian \& Kocharovsky, ApJ 2007
comoving laboratory
frame
frame

- Low-energy particles $\varepsilon \ll \varepsilon_{C r}$

- Critical-energy particles $\varepsilon \simeq \varepsilon_{\mathrm{cr}}$

- High-energy particles
$\varepsilon \gg \varepsilon_{c r}$

$$
\varepsilon_{\mathrm{cr}}=\frac{3}{2} \frac{\left(m_{e} c^{2}\right)^{2}}{e^{3 / 2} B^{1 / 2}} ; \quad h \nu \sim 100 \times \Gamma \mathrm{MeV}
$$

- for synchrotron losses

Delayed hard emission (GeV-TeV afterglow)

Problems for the near future

- What would a GRB look like when observed off-axis? where are orhan afterglows?
- What would a GRB remnant look like?
- Where are gravitationally lensed GRBs?
- If the jets are Pointing-flux dominated, then how the magnetic energy is converted into kinetic one? if not, then how to get such a large Lorentz factor in jets?
- What is the prompt radiation mechanism?
is there a way to solve low-frequency spectral index puzzle?
- Where is the inverse Compton peak, why there are no clear signs for it?

