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Overview

M Brief intfroduction on cosmic rays

g The supernova remnant hypothesis for the origin of cosmic rays
M Why gamma ray astronomy?

I?_I Why molecular clouds?

12[ Part 1: Passive Molecular Clouds -> how to use MCs as cosmic ray
barometers

g Part 2: Illuminated Molecular Clouds -> how to use MCs to locate CR

sources and constrain CR propagation
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The (local) Cosmic Ray spectrum
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Abundance relative to Carbon = 100

Cosmic Ray composition
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Abundance relative to Carbon = 100

Cosmic Ray composition

Nuclear abundance: cosmic rays compared to solar system
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. 5 - 6 order of magnitude more Li, Be, B!
(Solar System -> primordial nucleosynthesis)
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Abundance relative to Carbon = 100

Cosmic Ray composition

10

Nuclear abundance: cosmic rays compared to solar system

5 - 6 order of magnitude more Li, Be, B!
(Solar System -> primordial nucleosynthesis)

spallation during propagation in the Galaxy ->
we can measure the CR confinement time
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Abundance relative to Carbon = 100

A remarkable “coincidence”

Nuclear abundance: cosmic rays compared to solar system
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Abundance relative to Carbon = 100

A remarkable “coincidence”

Nuclear abundance: cosmic rays compared to solar system

Cosmic ray
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~ Baade & Zwicky, 1934

CR escape time

-> power of CR sources 3 x 10%° erg/s

NASA’'s Fermi telescope reveals best-ever view of the gamma-ray sky

CR total energy

Credit: NASA/DOE/Fermi LAT Collaboration
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Abundance relative to Carbon

A remarkable “coincidence”

~ Baade & Zwicky, 1934

Nuclear abundance: cosmic rays compared to solar system

CR escape time
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-> power of CR sources 3 x 10%° erg/s

NASA’'s Fermi telescope reveals best-ever view of the gamma-ray sky

CR total energy

few supernovae per

century in the Galaxy

Credit: NASA/DOE/Fermi LAT Collaboration
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Abundance relative to Carbon

A remarkable “coincidence”

Nuclear abundance: cosmic rays compared to solar system

CR escape time

~ Cosmic ray

Solar system

~ Baade & Zwicky, 1934

-> power of CR source

3 x 10 erg/s

NASA’'s Fermi telescope reveals best-ever view of the gamma-ray sky

CR total energy

few supernovae per
century in the Galaxy

Credit: NASA/DOE/Fermi LAT Collaboration
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Abundance relative to Carbon

A remarkable “coincidence”

Nuclear abundance: cosmic rays compared to solar system ~ Baade & ZWiCkY, 1934
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might be the sources of cosmic rays:

most popular scenario -> supernova remnants

Supernovae (or anything connected to them) Lergy

few supernovae per
century in the Galaxy

\ Credit: NASA/DOE/Fermi LAT Collaborati on
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Cosmic Ray composition: spallation

Spallation: production of light elements as fragmentation products of the
interaction of high energy particles with cold matter.

The anomaly is explained if (~ GeV) CRs transverse A =~ 5 g/ cm”



Cosmic Ray composition: spallation

Spallation: production of light elements as fragmentation products of the
interaction of high energy particles with cold matter.

The anomaly is explained if (~ GeV) CRs transverse A =~ 5 g/ cm”

A
Assuming propagation in the galactic disk: s = ~ 1 Mpc

OISM /\

much larger than
the size of the
diskl!l

CRs don't go straight but are confined in the disk
-> diffusive behavior -> isotropy!




Why is it so difficult?

M ...magnetic field...
SR

CR source you

We cannot do CR Astronomy.

Need for indirect identification of CR sources.




Gamma-ray astronomy
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Gamma-ray astronomy
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The sky @ E>100 MeV (FERMT)




Why molecular clouds?

Molecular Clouds -> sites of star formation
dense -> n ~ 100 cm™3
massive -> Mass up to 10° M.

Orion Nebula Mosaic HST - WFPC2

PRC95-45a - ST Scl OPO - November 20, 1995
C. R. O’Dell and S. K. Wong (Rice University), NASA



Why molecular clouds?

Molecular Clouds -> sites of star formation
dense -> n ~ 100 cm™3
massive -> Mass up to 10° M.

Cloud mass

Orion Nebula Mosaic HST - WFPC2

PRC95-45a - ST Scl OPO - November 20, 1995
C. R. O’Dell and S. K. Wong (Rice University), NASA
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...because they are massive



Molecular clouds are gamma ray sources

H.E.S.S.

W28 (Radio Boundary)

counts/pixel

Okumura et al, 2009
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Molecular clouds are gamma ray sources

H.E.S.S.

W28 (Radio Boundary)

counts/pixel

Okumura et al, 2009
Aharonian et al, 2008

18h03m

G 0.8+0.1

Aharonian et al, 2006




(1) Molecular clouds
as cosmic ray barometers



Molecular Clouds as CR barometers
(Issa & Wolfendale, 1981 ; Aharonian, 1991)

Zero-th order approximation: the CR spectrum everywhere in
the Galaxy is identical to the spectrum we observe at Earth

é F7 :1@(]\j;l)

known constant



Molecular Clouds as CR barometers
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Conversely, if we know M. and d (from CO measurements) we
can derive A and estimate both the normalization and spectrum
of CRs at the cloud -> Molecular Clouds are CR Barometers

Two caveats:

error in the determination of the mass (CO -> H2 conversion)

effective penetration of CR into the cloud (if not see Gabici et al. 2007)



Molecular Clouds as CR barometers: GeVs

Akharonian, 1991

,lﬁzs

1 (—]23

9]

1D—32

0
"G?

Qx4 1 Haata )

_ sac-2

F,lx

'!'.:.ll:'rﬁz 51 {k Mffd’.-\.ﬂ:=1|:-:' :

detectable with EGRET if:

a )
Ms 19
dipc

\_ )

only a few (Orion, Monoceros) -> Digel et
al.2001

we heed FERMI

gamma ray spectrum -> steep power law

from GeV to TeV energies



Molecular Clouds as CR barometers: TeVs

The galactic centre ridge as seen by HESS
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Molecular Clouds as CR barometers: TeVs

The galactic centre ridge as seen by HESS

HESS collaboration, 2006

mass of the clouds
measured from
observations of CS lines



Molecular Clouds as CR barometers: TeVs

The galactic centre ridge as seen by HESS
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Molecular Clouds as CR barometers: TeVs

The galactic centre ridge as seen by HESS
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Detectability at TeV energies:

the role of CTA

Gamma-ray flux from the cloud @1TeV
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Gabici, 2008




Detectability at TeV energies:
the role of CTA

Sensitivity of CTA @1TeV
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Detectability at TeV energies:

the role of CTA

Simplifying assumption:
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Detectability at TeV energies:
the role of CTA

é )

Detectability condition: dkp . < 20 M52/ 3

\ J

HESS cannot detect passive clouds
CTA will be able to detect local passive clouds (~ kpc distance scale)
CTA (HESS) will probe the Cosmic Ray pressure in regions of the Galaxy

where & > 1 (8 > 10)

Gabici, 2008



(2) Illuminated molecular clouds
(MC/SNR associations)



How to use Molecular Clouds...

SNRs accelerate CRs

Aharonian&Atoyan 1996, SG&Aharonian, 2007
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CRs "somehow" escape the SNR
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How to use Molecular Clouds...

CRs "somehow" escape the SNR

SNRs accelerate CRs

MCs enhance the
gamma ray emission

Aharonian&Atoyan 1996, SG&Aharonian, 2007



How to use Molecular Clouds...

CRs "somehow" escape the SNR

MCs enhance the

gamma ray emission
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SNRs accelerate CRs




How to use Molecular Clouds...

CRs "somehow" escape the SNR

gamma ray emission
A
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MCs enhance the

SN

constrain diffusion

We can try to:
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The diffusion of CRs

Spallation measurements tell us that cosmic rays follow tortuous paths
before escaping the Galaxy. Why?

The galactic magnetic field or, better, irregularities in the Galactic
magnetic field are responsible for the diffusive propagation of cosmic rays.




The diffusion of CRs

Spallation measurements tell us that cosmic rays follow tortuous paths
before escaping the Galaxy. Why?

The galactic magnetic field or, better, irregularities in the Galactic
magnetic field are responsible for the diffusive propagation of cosmic rays.

(Oversimplified picture)

maghetized the particle
cloudlets in an energy is
unmaghetized B =iy unchanged
background / (Lorentz force)
CR




The diffusion of CRs
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The diffusion of CRs
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A -> mean free path
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The diffusion of CRs

. /
A
\\ . To = é -> collision time
C
CR/' .

-> mean free path



The diffusion of CRs
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The diffusion of CRs
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A -> mean free path
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The diffusion of CRs
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A -> mean free path
A
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diffusion properties of the particle



The diffusion of CRs

It is convenient to define the quantity [) = A c called diffusion coefficient

diffusive propagation -> lg = VD1 @

straight line propagation -> lss = ct OC@



The diffusion of CRs

It is convenient to define the quantity [) = A c called diffusion coefficient

diffusive propagation -> lg = VD1 @

straight line propagation -> lss = ct OC@

Spallation measurements allow us to measure the average diffusion
coefficient in the Galaxy

12
ldz’sk:\/D tdisk — D = disk 1028 Cm2/S

/ \ tdisk lt,
~300 pe 3 Myr (from spallation) @ 10 GeV




The diffusion of CRs

It is convenient to define the quantity [) = A c called diffusion coefficient

diffusive propagation -> lg = VDt @

straight line propagation -> lss = ct OC@

Spallation measurements allow us to measure the average diffusion
coefficient in the Galaxy

12
ldz’sk:\/D tdisk — D = disk 1028 Cm2/S

/ \ tdisk lt,
~300 pe 3 Myr (from spallation) @ 10 GeV

Energy dependent -> D o E"°




Implications of the SNR hypothesis

CR sea -> 1 eV/cm? Eg%R = 10°%erg

SNR



Implications of the SNR hypothesis

CR sea -> 1 eV/cm? Eg%R = 10°%erg

volume affected by CRs from the SNR
SNR
EC’R

(FRY) Ve

E> Rcp =~ 100 pe



Implications of the SNR hypothesis

CR sea -> 1 eV/cm3

such a volume is affected for a time:

0.6
D = 10°%® b 2
B 10 GeV cm” /s

R

t ~

ESNR _ 1050erg

volume affected by CRs from the SNR
ES’NR

(5 RCR)

= 1eV/em’

E> Rcp =~ 100 pe

E»> D(1TeV) ~ 2x 10% cm?/s

10* yr



Implications of the SNR hype

ESNE — 1050

CR sea -> 1 eV/cm? erg

volume affected by CRs from the SNR
ESNR

(5 RCR)

> tien (00 10)

= 1eV/em’

such a volume is affected for a time:

o 0.6
D =10 (10 GeV) cm? /s |:> D(1 TeV) =~ 2 x 10* cm?/s




Montmerle’'s SNOBs

adapted from Montmerle, 1979 ; Casse & Paul, 1980 \ Super Novc.le_.OB
stars associations

lZ Massive (OB) stars form in dense regions -> molecular cloud complexes
g OB stars evolve rapidly and eventually explode forming SNRs

[A SNR shocks accelerate COSMIC RAYS

g CRs escape from their sources and diffuse away in the DENSE circumstellar
material -> molecular cloud complex

IZI ..and produce there gamma rays!

An association between cosmic ray
sources and molecular cloud is expected




Example: the galactic centre ridge
The galactic centre ridge as seen by HESS

HESS collaboration, 2006



Example: the galactic centre ridge

The galactic centre ridge as seen
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Example: the galactic centre ridge
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Example: the galactic centre ridge

CR source

HESS collaboration, 2006



Example: the galactic centre ridge

after a time tqirr CRs fill a
volume like this
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Example: the galactic centre ridge

after a time tqirr CRs fill a
volume like this

CR source
‘o - [2 IZ> if we know the age of the source we can
diff =~ 5 estimate the diffusion coefficient!

HESS collaboration, 2006



Example: the galactic centre ridge

SNR SgrA East -> t ~ 10% yr
(though quite uncertain)

after a time tqirr CRs fill a
volume like this

CR source
‘o - [2 IZ> if we know the age of the source we can
diff =~ 5 estimate the diffusion coefficient!

HESS collaboration, 2006



Example: the galactic centre ridge

12

CR source (~10* yr)



Example: the galactic centre ridge
12

D <7 x10%cm? /s

not too different from the
average diffusion

CR source (~10* yr) coefficient in the Galaxy




Example: the galactic centre ridge
12

D <7 x10%cm? /s

not too different from the
average diffusion
CR source (~10* yr) coefficient in the Galaxy
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Take-home messages

IZ Molecular clouds are massive -> lots of gammas expected
IZ MCs -> massive stars -> SNRs -> CR acceleration&escape -> gamma rays!
IZ can be used to probe the CR intensity throughout the Galaxy

IZ and/or to identify the sources of CRs and constrain the diffusion coefficient



