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. The Radio Waveband

Early Radio Astronomy
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FiG. T—Contours of constant intensity at 160 MHz and 480 MHz, taken at Wheaton, Illinois.

“Galactic Radio Waves”, G. Reber, Sky and Telescope, Vol. 8, No. 6, April 1949
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The Radio Waveband

Cut-off Points

The radio waveband extends from 30 m
(10 MHz) to 3mm (100 GHz)

At either end of this waveband the
atmosphere causes a cut-off

At the high frequency end the troposphere
is the problem

At the low frequency end the ionosphere is
the problem
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The Radio Waveband

Cut-off Points

The radio waveband covers 3 orders of
magnitude in wavelength

Such a range of wavelengths require
different types of telescope

In L1 we will cover the high frequency end
of the band from 3 mm down to 21 cm

In L2 we will cover the low frequency end of
the band from 21 cm down to 30 m

1 mm
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The Radio Waveband

Thermal (vibrational) dust emission dominates at
high frequencies: S, o 14

Bremsstrahlung (free-free) emission dominates at
intermediate frequencies: S, ~ 0

Synchrotron emission dominates at low
frequencies: S, o< =07

Thermal (vibrational)
dust emission

Thermal
Bremsstrahiung
(free-free emission)

Synchrotron
emission
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Single Dish Radio Telescopes

Single Dish Radio Telescopes
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Single Dish Radio Telescopes

Some Basics

o Single dish telescopes are like single pixel cameras
e They need to be scanned across fields of view (FOV) to produce maps
e This can lead to poor systematics in the images

e They recover total power data

A typical single dish measurement will employ a beam switching strategy to implement
a differencing scheme. This beam switching will usually be done by tilting a
sub-reflector within the main dish so that the source under observation is observed in
an interleaved fashion with an comparitively empty region of sky. This type of on—off
observing is done in order to eliminate time-varying sky and instrumental effects.
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Single Dish Radio Telescopes

Sensitivity

The sensitivity is related to the surface area:

2kB Tsys

AS= ——
Aet \/Br

The effective area, A , will be some fractional multiple of the true dish area, usually

between 0.6 and 0.7, and arises as a consequence of the imperfect conduction on the
dish surface.
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Single Dish Radio Telescopes

Sensitivity

2kB Tsys

A\ B T

AS =

This noise can be reduced by:

@ increasing the bandwidth, B , of the signal being passed
through the system

@ increasing the integration time, 7 , of the signal.

The first of these measures reduces the correlation in the signal, which scales as 1/B,
and consequently increases the number of independent measurements. The second
measure again increases the number of independent measurements by a factor , and
so the relative uncertainty in a measurement of antenna temperature is also inversely
proportlonal to the square root of the integration time. The antenna temperature has
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Single Dish Radio Telescopes

Resolution

of a large radio telescope, just as it’s easier in practice to measure the transmission
pattern than to measure the reception power pattern of an antenna. This reciprocity
between reception and transmission is used to simplify antenna calculations and
measurements. Reciprocity can be understood via Maxwell’s equations or by
thermodynamic arguments.

An antenna can be treated either as a receiving device, gathering the incoming
radiation field and conducting electrical signals to the output terminals, or as a
transmitting system, launching electromagnetic waves outward. These two
cases are equivalent because of time reversibility: the solutions of Maxwell’s
equations are valid when time is reversed. (Burke & Smith 1997)

The strong reciprocity theorem: If a voltage is applied to the terminals of an antenna A
and the current is measured at the terminals of another antenna B, then an equal
current (in both amplitude and phase) will appear at the terminals of A if the same
voltage is applied to B

can be formally derived from Maxwell’s equations (Rohlfs & Wilson).
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Single Dish Radio Telescopes

Resolution

The beam of a telescope is the Fourier Transform of the distribution of excitation
currents on the surface of the receptor:

F(k) = /_ " f(x)e 2k Xax

j oo g(x)e™! (reciprocity)

e—2imr/A i ‘ wus|h
df g(X)fdx (Huygens) osf -
r ~ R+4xsind =R+ xI (Fraunhofer) * nﬂ: S ool
df o g(x)e 2TR/Ae—TN/Agy o \ /\\/ \//\
f(n = /g(U)e*’?’T“’du u=x/I R U R

2 .
P o f N(0,0x) & N(0, o) ok =1/ox
The resolution is therefore inversely proportional to surface area:

Af[rad] ~ ﬁ

100 m dish at A =3 mm (100 GHz) A6 ~ 6 arcsec
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Single Dish Radio Telescopes

Resolution

f(x) * g(x) = F(k) x G(k)
I'(1,m) = I(1, m) = A(l, m)

Consequently we recover maps in units of Flux density per beam: Specific Intensity
1 Jansky = 10~26 Wattsm—2 Hz 1

Specific Intensity is related to brightness temperature:
2k Ty,
A2

Ix(Jy/beam) =

The Long Wavelength Universe
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e » Single Dish Radio Telescopes

A0 = 9arcmin A0 = 1 arcmin
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High Radio Frequency Science

Outline

© High Radio Frequency Science
Thermal Bremsstrahlung
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, High Radio Frequency Science

= Bremsstrahlung Emission

of a high energy proton or nucleus
dE 40 5211/2= _3

— | — =1.435 x 1074022 T1/2GNN, Wm
dt brems

The emission co-efficient for free-free transitions is:

1/2 728
8 (2;) i gnen; exp —hv /KT

=2 B A
Y3 mg/203(k7—)1/2

There must also be a corresponding absorption co-efficient:

Kk = ju/Bu(T) (Kirchoff)
- ﬂ(?:)”zm
3\3 cm3/?(kT)3/2,2
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T3/2,2 ©

Remembering:

B.(T)

and substituting:

0.1731 {1 +0.130log

T3/ } Zznen,

2h3 1
¢ exphv/kT —1

2kT” hv < kT  (Rayleigh — Jeans)
2”" exp—hv/kT  hv > kT  (Wien)
slia 2kT)3/2 By
g — —<In (7)1/2 _ !
o we2Zvmyg 2
T3/2
= 9.77|1+0.130log —
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If: 7, < 1

(Optically thin)

[l I,(0)exp—1, + B, (T) (1 — exp—7v)

7B, (T) where Ty = / o 4

Q

The logarithmic dependence of the gaunt factor on v can be approximated as
gi o< T15,=0-1 and we can assume that ne ~ n;, so we then find that

ko oc T—1:35,-21 2
Therefore
I, oc T70:35,-01 /ngdé, where /ngdé =EM
1/2
1,22 10GHz\ 2 (104K EM
T = X2 = 5.43< ) (7) K
& 2k v Te cm—% pc <

4.69 (1 +0.1761n (Te/104 K) —0.118In (1//1OGHZ))
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If: 7, > 1

(Optically thick)

Q

B.(T) where T = / o 4

. . .

‘S

s =R . | Cometary 14
~ / T Shell28%  erurand [
2 of s«z/ / 1 s %
= / e e .
: 1Y

Thick | Thin /

. I 1
9 95 Vpgrmond® 105 11 115
log v (GHz)

]

Q

T &~ 00827 '3%,721 [ nZae
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Table 4. Quantitative criteria for UCHII and HCHIL,
summarized from the literature.

Parameter UCHII HCHII
Sire =01 pe =0.05 pe
Mean density .':10‘ em ™’ >ix 107 em ™
EM =107peem™® =10 peem™®
Recombination linewidth <40 kms ! =4 kms !

(Murphy+ 2010)
with electron temperatures of Te =~ 10* K.
If we have much hotter electron gas GMmp
(107 — 108 K) then the thermal kle =~ —p
bremsstrahlung gets pushed up into the i »
X-ray regime. e.g. Clusters of Galaxies. . . 7 M Rert
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High Radio Frequency Science

Clusters of Galaxies at High Radio Fre-

Lx oc [ n2T&dl, where a < 0.5

ISZ X fne Tedg

A278: Chandra archive
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High Radio Frequency Science

Clusters of Galaxies at High Radio Fre-

Lx oc [ n2Tdl, where a < 0.5

Declination (J2000)

ISZ X f Ne Tedf “E ! - 0

L L !
R16730°  18m00°  17730°  1700°

Right Ascension (J2000)
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High Radio Frequency Science

Outline

© High Radio Frequency Science

The Sunyaev—Zel'dovich (SZ) Effect
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High Radio Frequency Science

The SZ effect

The optical depth to scattering through the
plasma is:

1
Te = — = NeoT
Ae

The Comptonization parameter is:

kot

y Moc? e le eTe

Intensity

Photons scattered to higher energy

SZ dip at radio
frequencies

Frequency

and the change in occupation number of the photons is:

X hv
An= xy( = 1)2 (Xcoth (E) — 4) where X = T (Kompaneets)

The associated change in intensity is:

The Long Wavelength Universe
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High Radio Frequency Science

The SZ effect

(Birkinshaw 1999)
In the Rayleigh-Jeans region:
Al
L
The y-parameter is a linear measure of the pressure along the line of sight through a

= -2y
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High Radio Frequency Science

The first SZ detection

o OVRO 40 m dish

o 40m dish at 20 GHz —
A0 ~ 1.3arcmin

o High redshift clusters have
sizes of about 1 arcmin

e OVRO 40m at 20 GHz
measures entire galaxy
clusters as point sources i.e.
in a single beam

The Long Wavelength Universe
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High Radio Frequency Science

MACS 0744

54.0 52.0 7:44:50.0
a (J2000)
0 0.02 0.09 0.36 1.45 5.77

x10-3 photons s™! em2 arcmin2
7 ]
;B' 56.0 54.0 52.0 7:44:50.0
PR o (J2000)
3 ] -3.56 -2.01 -0.46 1.10 2.65 4.20
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High Radio Frequency Science

MACS 0744

shock-front
cold- front‘:‘
5

-
! MUS}ANG‘I-GBT SZE e

56.0 54.0
o (J2000)

v

52.0 7:44:50.0

-3.56 -2.01 -0.46 1.10 2.65

%1074 Jy bm
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High Radio Frequency Science

The Resolution Problem

If we tried to observe SZ substructure at 20 GHz with the same telescope:
90/20 = 4.5, 4.5 x 6 = 27 arcsec
Looking at it another way, to get the same resolution we would need a telescope:

D =45%100 = 450m (!)

This problem is only going to get worse as we go to longer wavelengths. . .
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5 MINUTE BREAK
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Radio Interferometry

Below the 21 cm line

21cm

Synchrotron
emission

l

T T H T
1fem  10cmz 1m 10ng 1001
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Radio Interferometry

Interferometry
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Radio Interferometry

Interferometry

Multiplying the signals from the two
antennas

F = sin(2rvt) sin(2rv(t — 7g)).

—— The multiplied signals are then integrated
over a defined time period. The
combination of multiplication and
integration is a correlation and the

v v combined voltage multiplier and integrator
onone, system is known as the correlator. Since

the variation of v7, will in general be far
smaller than vt this multiplication may be
approximated by

Integrator

The Long Wavelength Universe
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These sinusoids are called fringes and the fringe phase is defined as

_ 2nDsing
DY
It varies with source position, 6, as
e = 2 Dcos 6
do T

W/\/WV\/WN“

The quantity Dsin 6 is the length of the baseline with length D projected onto the
plane perpendicular to the direction of observation.

The Long Wavelength Universe
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In practice an instrumental time delay 7; will be inserted into the backend of one

antenna before multiplication in order to compensate for 7, towards a defined position
on the sky. This pre-defined position is known as the phase center and will generally,
although not necessarily, be aligned with the peak of the aperture illumination function.
In interferometry the aperture illumination function is known as the primary beam, for
reasons which will become apparent. This single instrumental delay, 7, is only
appropriate for one position on the sky; a source offset from the phase center will see a

time delay 7 = 75 — 7.

The Long Wavelength Universe
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cos(2rpT) = COS |:27rl/0 <§ sin(fp — AG) — n)]
~ cos [27sin(Af)vy(D/c)cos(6p)] - (1)

constant 6(s)
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.
R(r) = ;_T /_ _VOV(t= . @

This signal will of course be bandlimited by the ampilifiers in the telescope system and
s0, using the Wiener—Khinchin relation’,

R(7) = e(7) cos(2mioT), (3)

where €(7) is an envelope function determined by the bandpass known as the delay
pattern and vy is the center of the frequency passband.
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baseline as projected onto the plane
normal to the direction to the phase center.
It is measured in wavelengths and is
interpreted as the spatial frequency: u.
Consequently we can rewrite Eq. 1 as

cos(2mvyT) = cos(2mul) (4)
where | = sin(A0) ~ A#.

The overall response of the interferometer
can therefore be written as

R(l) = / cos [2ru(l — I)] A()e(I') ()l
S
(5)

The Long Wavelength Universe
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telescope correlator as

R(D»,So) = Av / A(e)(c) cos [27Dy - (So + )] A ®)
4
If we define a complex visibility, V, as
V= |V]e¥ — / A(0)l(c)e2™x 7 g, 7)
4

then we are able to express Eq. 6 as

R(Dx,so) Av{cos [27D) - so] R{V} — sin[27D, - so] S{V}}

AoAv|V|cos [27Dy - sg — ¢v] . (8)

The Long Wavelength Universe




The co-ordinates of o are generally given as (/, m), where / and m are direction
cosines away from the phase center; D, is the baseline vector (u, v, w) projected onto
the plane normal to the direction of the phase center. We might therefore re-express
Eq.7 as

V(u,v,w) = / / A, m)I(, m)e—i27r [ul+vm+w(\/1—/2_m2_1)} ___dldm
—oo J —oo \/1—/2—m2

and it is this equation which is most often used to express visibility.

The Long Wavelength Universe
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o e ' VI— PR m?

The w term in the exponent of Eq. 9 is often neglected since for a restricted range of /
and m, as is often the case due to the limited nature of A(/, m), this term becomes
negligible.

In these circumstances the visibility equation reduces to a two-dimensional Fourier
transform and can be reversed to recover the sky intensity distribution from the
measured visibilities:

r(l,m) = / / V(u, v)emEHvm gy gy, ©)

where I'(/, m) is the true sky intensity, /(/, m), multiplied by the primary beam and the

normalization factor 1/4/1 — 2 — m?2.

The Long Wavelength Universe
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Radio Interferometry

Aperture Synthesis

North Pole

In the specific case where the baseline lies
exactly east—west, the rotation of the Earth
will cause the baseline vector u to rotate as
a function of time and describe a circle in
the uv plane with radius |u|. For a perfectly
east-west baseline this circle will remain in
the plane as the baseline has no
component parallel to the Earth’s rotation
axis, and it was this property that was
exploited by the earliest earth rotation
aperture synthesis telescopes. By
changing the length of the baseline, or by
using an array of several different baselines
all spaced along an east—west line, it is

Axis of Earch’s

rotation

The Long Wavelength Universe
49/79



Radio Interferometry

One Mile Telescope

FIG. 1. The 27 GHz contour map. The scale in declination is compressed as indicated by the
L shape in the lower right-hand corner, whose arms are each 10" arc; the shaded disc re-
presents the half potwer beam width of the instrument, The contour interval corresponds to a
brightness temperature of 10 000 °K.
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local sidereal time.

Since the sky signal is intrinisically real the
complex amplitude, V(u), received by a
baseline will obey the relationship

V(—u) = V*(u), (10)

where V* denotes the complex conjugate
of V.
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Each 4-fnc component in the sky intensity distribution will contribute a complex
exponential to V(u, v)

o f—

&(s—a)
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flux at the uv point (0, 0). This is because
the dishes measure only correlated
emission and can necessarily be separated
only by distances greater than the dish
size. A consequence of this is that the total
intensity of the sky being measured cannot
be found from synthesis measurements,
which will always have a total measured
flux of zero. A further consequence of the
incomplete filling in uv space is that the
recovered sky is convolved with the Fourier
transform of the pattern of the uv loci
described by the baselines.

Kilo wavingeh
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Fourier transform is known as the
synthesized beam. This distinguishs it
from the aperture illumination function,
known as the primary beam. The
relationship between the measured
visibilities and the recovered sky intensity
can be seen easily using the convolution
theorem. Since the true sky intensity
distribution /(/, m) is multiplied by the
primary beam and its Fourier transform
I(u, v) is sampled in uv space:

Kilo wavlngth

0.0
Kilo wavingeh

[(1, m) x A(l, m)] * W(I, m) = [7(u, v) + A, v)] x W(u, v). (1)

The Long Wavelength Universe
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Radio Interferometry

telescope which is preferentlally sensmve to those scales’7

Goussian Gaussion
_A—

T T
I=(u*+v?)
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Radio Interferometry

Direct F|Iter|ng from Interferometry

41
I = V(u+v?)
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Radio Interferometry

Direct F|Iter|ng from Interferometry

| = \(u+v?)

The Long Wavelength Universe




Radio Interferometry

Re-visiting Cluster Detection

The Long Wavelength Universe
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Radio Interferometry

Sensitivity & Resolution

Let’s revisit our expression for flux density sensitivity

AS = ﬂ — AS = \/EkTSYS
AV BT Aettr/Ng(Ng — 1)Br
where Ny is the number of dishes in the array, and Ny(Ny — 1)/2 is the number of

baselines.

Our expression for resolution remains similar

but now D is the length of the longest baseline in our array, rather than dish size.

The Long Wavelength Universe
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Low Frequency Science

Outline

© Low Frequency Science
Low Frequency Synchrotron Emission

The Long Wavelength Universe
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Low Frequency Science

Low frequency synchrotron

(dE) 4. ( E )2 B?

— ==& =) =

dt 377" \mec ) 210

The emission from a population of electrons with a power-law distribution of energies
(N(E)dE « E—PdE) therefore depends on the magnetic field strength

I, oc BPH1/2,(P=1)/2 yhere (p—1)/2=a (spectral index)

lsyn x y-ape +3

Tosyn X y~(at2) gatd

Assuming equipartition:
By, oc v(a+2)/(a+3)
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Low Frequency Science

Low frequency synchrotron

The extent of synchrotron sources is limited by the propagation speed and the lifetime
of the primary electrons - which is limited by synchrotron and inverse-Compton losses

B1/2 v —1/2
=1. 100 ———— | =) (1
t1/2 59 x 10 B2 T B(Z:MB [(GHZ) ( +Z):|

where Bgyg = 3.25(1 + 2)2 uG (12)
Beus is the equivalent magnetic field strength of the CMB at redshift z assuming
equipartition.
B2
8r
Urag TéMB

Esyn  oc  —UmagE 2 Umag =
r 2
Ec o —UagE
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Low Frequency Science

Low frequency synchrotron

The lifetime of electrons suffering synchrotron losses therefore increases with
decreasing frequency - and decreasing magnetic field strength

—0.5 —1.5

B

toym = 1.1 x 10° [ —— =
o= 10X (GHz) (uG) "

In magnetic fields weaker than Bgyg the electron lifetime is limited by inverse Compton
losses on CMB photons. At B < 1 uG there are purely inverse Compton losses and the
dependence of the lifetime on magnetic field strength reverses sign

—0.5 0.5

B

toyn = 1.0 x 108 [ —— =
i (GHz) (MG> '

Consequently synchrotron electrons have a maximum lifetime when the magnetic field
strength is B ~ 3 uG

The Long Wavelength Universe
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Low Frequency Science

Low frequency synchrotron

The size of synchrotron emitting sources is also determined by the propagation speed
of the CR electrons. In turbulent magnetic fields CRs propagate by diffusion with a
diffusion speed = Alfvén speed.

B

VHop
B

Vo D2 nim;

—0.5
2.18( ”83) ( B ) kms™
cm™ nG

Vg =

Q

i.e. in a typical galaxy halo with ne ~ 10=3cm—3, v4 ~ 70(B/uG)kms—'.

The Long Wavelength Universe
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However, with v4 ~ 70(B/uG) kms— a synchrotron electron radiating at 50 MHz can

propagate
B 0.5
L ~ 330 (—G) kpc B >3uG
I
B 1.5
L ~ 30 (—G) kpc B <3uG
i

At B =~ 3 uG (maximum lifetime) a propagation length of 200 kpc is expected.
— synchrotron emitting regions are much bigger at low frequencies

The Long Wavelength Universe
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Low Frequency Science

NGC 253

1 1 ]
A = 3.6cm (8.5GHz) A = 90 cm (345 MHz)

(Heesen+ 2009)
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Low Frequency Science

Dipole Arrays

The Long Wavelength Universe
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Low Frequency Science

Dipole Arrays

+1/2

Dipole axis

-l/2

We can alter the directionality of the antenna by applying additional phase

f()

/g(u)e"?““’du u=x/l

f(l— a) — /g(u)e—i27raue—i27ru/du
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Low Frequency Science

Dipole Arrays

Phasing up an array of dipoles to look in a
single direction is known as beam-forming.

The Long Wavelength Universe
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Data behaviour: Element response

Data behaviour: Tile beams ~16x16 elements

Combine phased
element

responses to get
beams from a tile
of ~256 elements

Phased tile
beam

Main

element

beam
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Low Frequency Science

Dipole Arrays

Once you have phased up a small array of
dipoles (a station) you can then connect
that station to another station
interferometrically.
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Low Frequency Science

z

WENSS 325 MHz

(credit: van Weeren)
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Relative Declination (arcsec)

Fic. 1. The in declination i i
U shape in m :m. right-hand corner, whose arms are cach 10" arc; the shaded disc re-
presets th half poes eam i of dm instrument. The contour interval corresponds 1o @
Srigans semperair o 000

o
Right Ascension (orcsec)
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