DIAS Summer School 2011, Dublin (Ireland)

Blazars

Luigi Costamante
HEPL/KIPAC, Stanford University

The "LEGO" structure of AGN/Blazars

Of all galaxies:

~1% Active Nucleus

~0.1% relativistic jets

"Unification scenario"

Terminology: from zoology to physics

BLAZAR (term invented in 1978 by E. Spiegel to denote objects with properties of both BL Lacertae and OVV quasars):

any AGN with a relativistic jet pointing at angles close to the line of sight, and whose emission is dominated by relativistic effects.

No pretty pictures...

...but fantastic spectra & lightcurves!

Remember:

Blazer

Blazar

Photo-ID of a Blazar: the Spectral Energy Distribution (SED)

Usual relativity: (rulers and clocks)

$$\Delta x = \frac{\Delta x'}{\Gamma}$$

$$\Delta t = \Delta t' \, \Gamma$$

$$\Delta x = \frac{\Delta x'}{\Gamma}$$
 $\Delta t = \Delta t' \Gamma$ $\Gamma = \frac{1}{\sqrt{1 - \beta^2}}$

Not so when information is carried by photons! (understood 50 years after SR, see Terrel 1959)

Usual relativity (rulers and clocks)

$$\Delta x = \frac{\Delta x'}{\Gamma}$$

$$\Delta t = \Delta t' \, \Gamma$$

$$\Delta x = \frac{\Delta x'}{\Gamma}$$
 $\Delta t = \Delta t' \Gamma$ $\Gamma = \frac{1}{\sqrt{1 - \beta^2}}$

Usual relativity (rulers and clocks)

$$\Delta x = \frac{\Delta x'}{\Gamma}$$

$$\Delta t = \Delta t' \Gamma$$

$$\Delta x = \frac{\Delta x'}{\Gamma}$$
 $\Delta t = \Delta t' \Gamma$ $\Gamma = \frac{1}{\sqrt{1 - \beta^2}}$

Usual relativity (rulers and clocks)

$$\Delta x = \frac{\Delta x'}{\Gamma}$$

$$\Delta t = \Delta t' \ \Gamma$$

$$\Delta x = \frac{\Delta x'}{\Gamma}$$
 $\Delta t = \Delta t' \Gamma$ $\Gamma = \frac{1}{\sqrt{1 - \beta^2}}$

Relativistic sock... (Lemoine's daughter, Dublin 2011)

Usual relativity (rulers and clocks)

$$\Delta x = \frac{\Delta x'}{\Gamma}$$

$$\Delta t = \Delta t' \ \Gamma$$

$$\Delta x = \frac{\Delta x'}{\Gamma}$$
 $\Delta t = \Delta t' \Gamma$ $\Gamma = \frac{1}{\sqrt{1 - \beta^2}}$

$$\Delta x = \Delta x' \delta$$

$$\Delta x = \Delta x' \delta$$
 $\Delta t = \Delta t' / \delta$

$$\sin \theta \approx \theta = 1/\Gamma \rightarrow \delta = \Gamma$$

Opposite than usual Relativity!

Beaming factor δ

$$\delta = \frac{1}{\Gamma(1 - \beta\cos\theta)}$$

Beaming effects:

$$h\nu = h\nu'\,\delta$$

$$d\Omega = d\Omega'/\delta^2$$

$$\Delta t = \Delta t'/\delta$$

$$V = \delta V'$$

$$I(\nu) = \delta^3 I'(\nu')$$

$$U'_{rad} \simeq U_{rad} \Gamma^2$$

$$F(\nu) = \delta^3 \, F'(\nu') \qquad \text{Blob}$$

$$= (\delta^2/\Gamma) \, F'(\nu') \, \stackrel{\text{Continuous}}{\text{flow}}$$

$$\frac{N(\theta < \theta_0)}{N_{tot}} = \frac{2\pi \int_0^{\theta_0} \sin\theta \, d\theta}{4\pi} = \frac{1}{2\Gamma^2}$$

Superluminal motion:

$$\beta_{app} = \frac{\beta \sin \theta}{1 - \beta \cos \theta}$$

Fig. 21—The apparent velocity relative to the speed of light vs. angle to the line of sight for an emitter approaching at relativistic speed. Different curves correspond to different Lorentz factors: from the top down, $\gamma=15$, 10, 5, 2. The dotted line corresponds to $\beta_a=1$. Note that β_a is essentially independent of γ at large angles.

Fig. 22—The jet to counterjet ratio, J, vs. angle to the line of sight for p=2. Different curves correspond to different Lorentz factors: from the top down, $\gamma=15$, 10, 5, 2. Note that the ratio is essentially independent of γ at large angles.

Proofs of Beaming: Superluminal Motion

Beaming proofs: Gamma-ray transparency

$$x = h\nu/m_e c^2$$

$$\Delta t = \Delta t'/\delta$$

$$R \le \frac{ct_{var}\delta}{1+z}$$

$$\tau_{\gamma\gamma}(x) = \frac{\sigma_T}{5} R \frac{L_x(1/x)}{4\pi R^2 m_e c^3}$$

$$\tau_{\gamma\gamma} \simeq \frac{l(1/x)}{60} \qquad \begin{array}{c} \text{Compactness} \\ \text{parameter} \end{array}$$

Without beaming, 1~5000-50000

$$\delta \ge \left(\frac{\sigma_T d_l^2 (1+z)^{2\alpha}}{5 h c^2} \frac{F(\nu_0)}{t_{var}}\right)^{\frac{1}{4+2\alpha}} \delta \ge 5 - 50!$$

1) Thermal Properties

Flat Spectrum Radio Quasars (FR II) B

BL Lacs (FR I)

Broad Emission Lines:

EW>5 Å

Intense disk & BLR emission => high U_{rad} (UV)

Dusty Torus => high U_{rad} (IR)

EW<5 Å

Weak disk & BLR emission => low/absent U_{rad}(UV)

No Dusty Torus ? (FRI) => low/weak U_{rad}(IR)

1) Thermal Properties

FSRQ (FR II)

BL Lacs (FR I)

Broad Emission Lines:

EW>5 Å

EW < 5 Å

1) Thermal Properties

FSRQ (FR II)

BL Lacs (FR I)

Broad Emission Lines:

EW>5 Å

EW<5 Å

CAVEAT: EW is a ratio between line luminosity and continuum Urad is given by absolute line luminosity!

- 1) FSRQ and BLLacs can have SAME LINE LUMINOSITY! (e.g. PKS 0208-512, L_{MgII}~10⁴⁴)
- 2) if the non-thermal continuum has lower and lower luminosity
 - => a BLLac/Blazar can be misclassified/not recognized hidden in a normal or RQ galaxy

1996: - BL Lac was not a BL Lac...

- 3C279 was a BL Lac...

From Low to High-energy peaked Blazars: FSRQ - LBL - IBL - HBL - Extreme BL

X-ray spectrum defines/proxies the classification

From Low to High-energy peaked Blazars: FSRQ - LBL - IBL - HBL - Extreme BL

Ghisellini, Costamante et al. 1998

From Low to High-energy peaked Blazars: FSRQ - LBL - IBL - HBL - Extreme BL

From Low to High-energy peaked Blazars: FSRQ - LBL - IBL - HBL - Extreme BL

Tagliaferri et al. 2002

From Low to High-energy peaked Blazars: FSRQ - LBL - IBL - HBL - Extreme BL

Aharonian et al. 2010 Abdo et al. 2010

From Low to High-energy peaked Blazars: FSRQ - LBL - IBL - HBL - Extreme BL

Note: blazars are *not* extreme accelerators: 10^{-4} less efficient than Crab!

How to find/classify blazars? Radio+X-ray surveys, broad-band indexes

HBL-LBL: α_{RX} =0.75

Emission mechanisms:

Hadronic scenarios:

PP: not efficient, L~10⁴⁵ erg/s needs target 10⁶ cm⁻³

For typical blazar variability (few hrs):

PY: $E_p > 10^{19}$ eV, needs large densities of target photons

pB: $E_p > 10^{19}$ eV, needs large magnetic fields

Hadronic scenarios: cooling times

For HBLs, only proton synchrotron (B>100G) works!

Examples of applications of proton-synchrotron scenario:

Aharonian 2000, Zacharopulou 2011

Leptonic Scenarios: population of relativistic electrons

Cooling: who wins? Highest energy density U' in comoving frame

Leptonic scenarios:

Ly α CLOUD , r WIND

IR radiation from Hot Dust

Broad Line Region clouds

 $R \propto L_{disk}^{1/2}$ (Bentz et al. 2006 ; Kaspi et al. 2007) $U_{rad} \propto L/R^2 \sim const. \sim 10^{-2} erg/cm^3$

Fig. 2.—Geometry of the source. The radiating region, denoted by short cylinder of dimension a, moves along the jet with pattern Lorentz factor Γ_p . Underlying flow moves with Lorentz factor Γ , which may be different.

Leptonic scenarios

Ghisellini et al. 2009 Sikora et al. 2009

SED diagnostic

$$\nu_s = \frac{4}{3} \, \gamma_b^2 \, \delta \, \nu_L$$

$$\nu_{SSC} = \frac{4}{3} \, \gamma_b^2 \, \nu_s$$

$$\nu_{EC} = \frac{4}{3} \, \gamma_b^2 \, \Gamma \, \delta \, \nu_{ext}$$

$$\nu_L = eB/m_e c \simeq 2.8 \ 10^6 \ B \ (Hz)$$

Electrons distribution

Albert et al.2007

The Main Plane of Blazars

Jet non-thermal properties SED peak frequency

High-peaked Low Compton dominance

Low-peaked High Compton dominance

Accretion/Thermal properties

Radiatively inefficient disk, Absent/weak emission lines Low accretion rate Radiatively efficient disk, Strong broad emission lines Blue bump, high accretion rate

The Main Plane of Blazars

Radiatively inefficient disk, Absent/weak emission lines Low accretion rate Radiatively efficient disk, Strong broad emission lines Blue bump, high accretion rate

Blazars Sequence(s)

- 1) sequence of SED peak frequencies (Giommi et al.)
- 2) peak frequencies vs bolometric luminosities

EGRET era, Fossati et al 1998 Donato et al 2002

3) "Theoretical" Sequence

one-zone SSC+EC modelling: parameters form a sequence

Caveat: observational biases (Egret gets mostly high states and almost no HBL)

Ghisellini et al. 1998, 2002

The Fermi Blazars' Divide

Something is happening at L ~0.01 L_{Edd}

Ledlow & Owen 1996 Ghisellini & Celotti 2002

Trump et al. 2011

Jet Powers (kpc scale):

To power the Lobes:

$$Q = \frac{E}{\eta T} \approx \frac{10^{60-61} erg}{\eta 10^8 yrs} \simeq 10^{45-46} erg/s$$

L_{disk} ~ L_{kin}:

Jet Powers (pc-scale):

Cosmic Evolution:

FSRQ evolve positively (V/V_{max} \sim 0.64-0.76) BLLacs still unclear: LBL \sim + or no evolution HBL \sim negative evolution

A lot is changing now with Fermi

Ajello et al 2011, Fermi symposium

Fermi does <u>not</u> detect all type of blazars: misses at the two ends of SED sequence

MeV-blazar

Hard TeV BL Lac

Redshift distribution

Swift-BAT

ILAC, Abdo et al. 2010 Ajello et al. 2010

Overlap is small (not the same objects)

Outline Part II

The problem of EBL-absorption

Variability

The X-ray/TeV connection

 Size and location of the gamma-ray emitting region (HBL vs FSRQ?)

The diffuse Extragalactic Background Light (EBL): Spectral Energy Distribution

Problem: γ - γ interaction with EBL photons

The large uncertainty on the EBL caused a fundamental ambiguity in the interpretation of gamma-ray spectra

Opportunity: at the same time, blazars (as TeV beamers) can provide independent constraints on the EBL

Breakthrough in 2005:

H.E.S.S. spectra of 1ES 1101-232 & H 2356-309

10

 $\lambda [\mu m]$

Aharonian et al. 2006 (HESS Coll), Nature

New constraints also in the NIR band:

H.E.S.S. spectrum of IES 0229+200 constrains EBL to slope λ^{-1}

(confirming HEGRA indications on IES 1426+428)

IES 0229+200 (z=0.140)

H.E.S.S. (Aharonian et al 2007)

Photon-wise, NO need (yet) of new physics

At present, VHE detections and spectra are ALL consistent/explainable with a low EBL level and standard blazar physics. Not even for objects at z=1

Even with low EBL, some VHE spectra remain hard!

New class of HBL is emerging: TeV-peaked BL Lacs

Characterized by Γ_{VHE} < 2 (typically 1.5-1.7) with any EBL intensity (even lowest one).

\Rightarrow Compton peak \geq 3-20 TeV

Extremely difficult to model with one-zone SSC models, due to Klein-Nishina effects at high energies. Many scenarios proposed (low-energy cutoff at very high energies, internal absorption, extended emission) but none seems satisfactory (need extreme parameters, B <mG, low radiative efficiency <<1%, additional ad hoc conditions etc...).

Different from the typical HBL detected by Fermi!

"100 GeV"-peaked HBL objects (bright and easily detected in Fermi-LAT)

Abdo et al. (LAT coll) 2010a, 2010b, 2011

Variability

Variability depends on the position of the observed band relative to the SED peaks

Variability depends on the position of the observed band relative to the SED peaks

Do not compare apples with oranges...

X-ray (or Gamma-ray) variability means very different electron energies for different SED types

Blazars typically vary much more above each 'peak' e.g. Mkn 421 in 2006

Fermi band: little/no variability

(as in the optical...)

Abdo et al. 2010 see talk by S. Ciprini, G. Tosti

Fermi band: excess variance

Ultra-fast variability! 2x flux in ~2-3 min. 10x in less than 1 hr

R ~ $5 \times 10^{12} \delta$ cm $\approx 0.01 \delta$ R_S

Aharonian et al. (HESS coll) 2007

 $\Gamma \ge 50-100$ Needle in jet ? (Ghisellini & Tavecchio 2008)

Jets in a jet?
(Giannios et al 2009)

magneto-centrifugal acceleration? ... (Ghisellini et al 2008)

Rapid variability seems ubiquitous!

(detected down to shortest timescales allowed by statistics)

3C 279: variability gamma + optical polarization

Abdo et al. 2010, Nature

We focus now on HBLs, and the high-energy branch of the electron distribution

X-ray — TeV connection: same-energy electrons emitting by Sync & IC

What have we learned so far? and recently?

X-ray & TeV are typically highly correlated during flares

Classic case: Mkn 501 in 1997

Pian et al 1998, Krawczynski et al 2002

However, during the two following years...

Note the flux-scales on the axes!

Gliozzi et al. 2006

Fractional variability in X-ray:

Also PKS 2155-304 at VHE shows different behaviors

Aharonian et al. (HESS coll) 2010

Mkn 421 in 2006

Changes from log-parabola to pure power-law spectra over 4 decades in energy

Hint of different acceleration processes at work, in low/high state

Other classic case: IES 1959+650 flaring in 2002

Krawczynski et al. 2004

Possible ways to obtain orphan flare:

Krawczynski et al. 2004

Two most significant events/campaigns:

- Mkn 421 in March 2001 (Fossati et al 2008; past generation CT)
- PKS 2155-304 in July 2006 (Aharonian et al 2009, 2010)

Mkn 421 campaign in 2001

Quadratic relation also in decaying phase!

Difficult to obtain even in Thomson condition, because $d\gamma/dt \propto \gamma^2$

Most surprising case: PKS 2155-304 in summer 2006

MWL campaign unveiled 3 important properties:

I) First time in HBL: high Compton Dominance!

2) Strong and strict correlation: X-ray and TeV emissions respond to the same flaring event

DCF X-TeV

95% upper limit on lags: ~ 200s

Cross-correlation peak distribution of 10000 simulated lightcurves

RMS = 76 s

Buehler et al. 2007, 2008 Costamante et al. 2007,2008 Aharonian et al. (HESS coll.) 2009

2) Strict correlation also spectrally!

Time-resolved spectroscopy in both bands, 7-14 min bins

3) Cubic relation X-ray / TeV flux!

Difficult to explain with one-zone model.

Thomson alone is not enough to explain cubic decay

Thomson condition requires:

 $\delta > 100 \& B < 5mG$

⇒ high energy electrons have not cooled

Decay as adiabatic cooling? could work, but cubic decay requires B to increase as $B \propto R^{+0.4}$ (i.e. energy density $W_B \sim R^{3.8}$): on same timescales of X-ray/TeV variations and causing as 15% decrease in optical synchrotron emission.

Not observed!

Aharonian et al. (HESS coll.) 2009

Superposition of 2 SEDs: 2 different components/zones, 1 persistent + 1 flaring

a) If $F_{\gamma} \propto F_{x}^{2}$ SSC ok with B ~ IG R ~3-5 x 10¹⁴ cm

b) If $F_{\gamma} \propto F_{x}$ Constantly high Compton Dominance! External Compton on structured jet?

Unveiled a new mode of flaring in HBL:

Location and size of the gamma-ray emitting region(s)

In HBL/FRI, data suggest location is very close to BH

Indication from the FSRQ data is OF OPPOSITE SIGN

In FSRQ, gamma-ray emission seem to come from far away from the Black Hole.

Flat Spectrum Radio Quasars are characterized by intense circumnuclear thermal fields, as reprocessing of the disk ionizing radiation: by the **Broad Line Region (UV**, Ly α , CIV, Mg II) or by **Hot Dust (IR)**. These target photons are used for External Compton emission mechanism. These same photons cause huge internal γ - γ absorption!

First indication of gamma-ray emission likely beyond the BLR: 3C 279 detection at VHE

MAGIC detection implies huge fluxes if gamma-ray zone is deep inside the BLR, barely acceptable if close to BLR size (~0.1 pc)

Fermi-LAT results on several FSRQ: NO evidence of strong BLR cut-offs!

Even among the most powerful objects!

Characterized by strong Disk emission and large BLRs

Examples assuming no intrinsic steepening (case most favorable to absorption): power-law fits up to ~4 GeV extrapolated at higher energies, with (dashed lines) or without BLR absorption.

PKS 1454-354:

PMN J1016+0512:

BZQ J2056-471:

$$L_{disk} \sim 5 \times 10^{46} erg/s$$
, $R_{bir} \sim 7 \times 10^{17} cm$

if R_{diss} $\sim 2 \times 10^{17} \implies \mathsf{T_{BLR}} > 30$!

 $L_{disk} \sim 9 \times 10^{45} erg/s$, $R_{bir} \sim 3 \times 10^{17} cm$

if R_{diss} ~2.5×10¹⁷ \Rightarrow T_{BLR} > 16!

L_{disk} ~ 4×10^{46} _{erg/s}, R_{blr} ~ 6×10^{17} _{cm} if R_{diss} ~ $2 \times 10^{17} \Rightarrow T_{BLR} > 30$!

Values of R_{diss} L_{disk} R_{blr} used in Ghisellini et al 2009

Rdiss ≥ RBLR

Costamante et al. 2009, 2010, Abdo et al. 2011 (in prep.)

Further evidence: VHE detections of 4C 21.35 and PKS 1510-08

If $R_{diss} > R_{BLR}$, does External Compton on IR work?

4C 21.35 has strong IR emission from Hot Dust, T~1200K: $L_{IR} \sim 8x10^{45}$ erg/s , R ~2-4 pc (Malmrose et al. 2011)

MAGIC fundamental discovery on 4C 21.35: fast variability!

- 2) If EC (IR) ok, $R_{diss} > 1-10 pc$
- a) larger region, mm-transparent
- b) variability ~days-week

Instead, 10-min variability!

 $R \sim 2.5 imes 10^{14} \; \delta_{10} \; t_{
m var,10min} \; {
m cm}$ at several pc from Black Hole

Aleksic et al. 2011 (MAGIC coll)

Conclusions

- Last decade we learned a lot, especially at VHE/HE.
- Pinning down the EBL has finally allowed the study and understanding of the real Blazar properties at VHE.
- We start to understand better connection between accretion, jet power and SED properties.
- MWL is providing diagnostic of jet structure & particle evolution

We still don't understand basic aspects!

- particle acceleration / emission mechanisms
- location and size of "gamma-ray zone"

Bring fresh air and intellectual power!

back up slides

Emerging of new components, also on long timescales: evidence in PKS 2005-489

Mwl campaigns XMM-RXTE-HESS in 2004-2005

$\Gamma = 1.5$

What is NOT: - it's not the hardest possible theoretical spectrum

- it's not the hardest imaginable spectrum in blazars

- it's not a sharp, "hard limit"

Examples: - bulk motion Comptonization (Aharonian et al 2001, 2006)

- high-energy "low-energy cutoff" in particle spectrum (Katarzynski et al 2007)
- internal absorption on narrow-banded target field (Aharonian et al 2008)
- uncooled particle acceleration spectrum $\Rightarrow \Gamma \sim 1.2$ (Aharonian et al 2006)
- pile-up particle distributions or fine tuned shock-acceleration conditions (e.g. Stecker et al 2007, but dibated, anyway with $\Gamma > 1.2$)

$\Gamma = 1.5$

What it is: It is the borderline between reality and speculation.

- $\Gamma \ge 1.5$ is observationally confirmed and can be obtained theoretically in many circumstances (no special tuning);
- Γ < 1.5 is *progressively* more unlikely: it requires either parameters pushed to the limits, or ad-hoc scenarios not supported by data.
- Synchrotron emission traces directly the particle spectrum: so far in blazars never observed spectra from high energy particles ($\gamma > 10^3$) with $\Gamma < 1.5 \pm 0.2$ (~ 1.2 -1 seen but as low-energy cutoff in X-rays, at low electron energies).
- Never observed a "naked" hard source: hard TeV features always seen in connection with EBL effects ("cosmic conspiracy"). It would require a dranatic evolution of blazar properties with z (0.0-0.3).

Blazars have always a combination of at least 2 types/engines of variability:

Fermi band: little/no variability

(as in the optical...)

Abdo et al. 2010 see talk by S. Ciprini, G. Tosti

Poutanen & Stern 2010

GeV Breaks caused by absorption on HeII and HI lines (tau determined from free fits), from high-ionization part of the BLR (close to BH).

Table 2 Spectral Properties of Blazars

Object	z	Power Law	Broken Power Law				Power Law + Double Absorber			
		χ^2	Γ ₁	Γ_2	$E_{\text{break}}(1+z)(\text{GeV})$	χ^2	Γ	$ au_{ m He}$	$ au_{ m H}$	χ^2
3C 454.3	0.859	117	2.36 ± 0.02	3.60 ± 0.22	4.5 ± 0.5	6.5	2.37 ± 0.02	6.1 ± 0.9	18.5 ⁺¹⁹	4.1
PKS 1502+106	1.839	55	2.15 ± 0.03	2.87 ± 0.16	7.8 ± 1.5	7.8	2.13 ± 0.03	1.6 ± 0.6	8.4 ± 1.6	6.3
3C 279	0.536	18	2.17 ± 0.07	2.56 ± 0.09	1.8 ± 0.6	4.6	2.28 ± 0.04	2.0 ± 1.1	4.5 ± 3.1	10.1
PKS 1510-08	0.36	13	2.43 ± 0.05	2.84 ± 0.27	3.1 ± 1.8	6.6	2.45 ± 0.04	2.7 ± 1.5	$2.7^{+8}_{-2.7}$	8.1
3C 273	0.158	10	2.82 ± 0.06	3.40 ± 0.42	$1.9^{+1.0}_{-1.9}$	6.1	2.87 ± 0.05	$3.6^{+6}_{-3.6}$	$0^{+\infty}_{-0}$	7.8
PKS 0454-234	1.003	50	2.04 ± 0.05	2.81 ± 0.17	5.3 ± 1.0	12.3	2.04 ± 0.04	3.0 ± 0.8	9.5 ± 2.7	13.7
PKS 2022-07	1.388	15	2.45 ± 0.05	3.02 ± 0.17	9.6 ± 4.3	11.6	2.48 ± 0.06	$0.8^{+0.9}_{-0.8}$	$2.9^{+4.3}_{-1.8}$	12.9
TXS 1520+319	1.487	11	2.49 ± 0.07	2.89 ± 0.24	4.7 ± 0.5	7.9	2.48 ± 0.74	1.7 ± 1.6	6.5^{+9}_{-5}	7.2
RGB J0920+446	2.19	21	1.99 ± 0.08	3.47 ± 0.4	19 ± 5	7.8	2.01 ± 0.07	$0^{+0.5}_{-0}$	7.6 ± 2.9	11.9

Note. The number of degrees of freedom is 12 for the power-law model and 10 for other models.

Problem: $\tau_{10eV} \sim 1 - 4 \times \tau_{50eV}$!

If gamma-ray zone is deep inside the BLR (highest-ionization region), how can gamma-rays avoid absorption on the main BLR opacity @10eV ? (much higher photon density, directly seen/derived from UV-opt line luminosities, longer paths inside BLR).

Mechanism does NOT work in general, viable only when LAT spectra show NO photons above ~10-20 GeV (rest frame) => very strong cutoffs. Scenario OK for 3C454.3, does not work in 0920, 0454, 1502.

Where Poutanen & Stern 2010 does not work

49

48

 $\nu_{\rm L}$

46

Some objects compatible with mild BLR absorption

Log-parabolic fits to the data only up to ~3-4 GeV, and extrapolated at higher energies

LAT spectra: original, observed; BLR de-absorbed

Only moderate (τ ~1-2), corresponding to $Rdiss \cong RBLR$

...But could be also intrinsic cut-offs (end of particle distribution).

Some objects compatible with mild BLR absorption

Already with $\tau \ge 3$ (path just a few 10^{16} cm), absorption would become too strong, requiring a second gamma-ray component in the SED

Problem: γ-γ interaction with photons of the Extragalactic Background Light

Uncertainty on EBL caused a fundamental ambiguity in the interpretation of gamma-ray spectra

Aharonian 2001 (ICRC review and refs therein) Aharonian et al. 2005 (HESS Coll) Costamante et al. 2004, 2005, 2006

Opportunity: at the same time, blazars (as TeV beamers) can provide independent constraints on the EBL

Xray-TeV emission might also correspond to different branches of single electron population

From reverberation mapping technique on AGNs over wide range of luminosity: Relation $R \sim L_{disk}^{1/2}$

Energy density

$$U_{\rm BLR} = \eta \frac{L_{\rm disk}}{4\pi R_{\rm BLR}^2 c} \simeq 10^{-2} \, {\rm erg \, cm^{-3}}$$

$$\frac{N(\theta < \theta_0)}{N_{tot}} = \frac{2\pi \int_0^{\theta_0} \sin \theta \, d\theta}{4\pi} = \frac{1}{2\Gamma^2} \qquad d\Omega = d\Omega'/\delta^2$$

$$\Delta t = \Delta t'/\delta$$

$$P_i = \pi R^2 \Gamma^2 c U_i' \qquad V = \delta V'$$

$$\Gamma(1 - \beta \cos \theta) \qquad I(\nu) = \delta^3 I'(\nu')$$

$$F(\nu) = \delta^3 F'(\nu')$$

$$Q = \frac{E}{\eta T} \approx \frac{10^{60 - 61} erg}{\eta 10^8 yrs} \simeq 10^{45 - 46} erg/s = (\delta^2/\Gamma) F'(\nu')$$

 $h\nu = \delta h\nu'$

Problem: interpretation of TeV blazars spectra

With a high EBL:

- IC peak > 10 TeV Lc >> Ls
- Bolometric luminosity is strongly under-estimated
- 1ES 1426+428 one of the most problematic

$$\Gamma_{\rm obs} = 3.5 \pm 0.3$$

Aharonian et al. 2005

$$\Gamma_{\rm obs} = 3.37 \pm 0.07$$

Compton Dominance

Fig. 17. The logarithm of the Compton dominance is plotted as a function of $\log(v_{\text{peak}}^S)$ for all sources detected and for which v_{peak}^S and $v_{\text{peak}}^{\text{IC}}$ could be reliably determined.

Structured Jets:

Possible radiative interplay between different jet parts:

Spine-layer

-8 Needle: Γ=50, B=0.9 G γ_{peak}=2.5e3, R=3e14 cm 46 -10 Substituting the second s

Decelerated jet

Ghisellini & Tavecchio 2008

Georganopulous & Kazanas 2003

Jet structure/composition

