High-energy emission from RADIO GALAXIES

Frank M. Rieger

Outline

_Introduction

- the AGN zoo and unification
- ▶ radio galaxies FR I/II dichotomy
- radio galaxies @ high and very-high energies

Credit: NASA E/PC

_Zoom-in I: VHE gamma-ray production in FR I

- ▶ VHE emission from non-blazar prototype M87
- particle acceleration and γ-ray production in BH environment
- escape of TeV γ-rays

_Zoom-in II: UHE cosmic-ray production in FR I

- ▶ the case of Cen A
- cosmic-ray acceleration sites and efficiencies

Radio galaxies I

Introduction

- the AGN zoo and unification
- ▶ radio galaxies FR I/II dichotomy
- radio galaxies @ high and very-high energies

The AGN zoo - classification (attempt)

The AGN zoo - classification (attempt)

Extended radio sources - morphologies

_Fanaroff & Riley (1974) - FR I class:

- ▶ lower luminosity radio source $L_{178 \text{ MHz}} \leq 2 \times 10^{32} \text{ erg/s/Hz}$
- edge-darkened (no prominent hot spot)
- only weak optical emission lines
- jet widens & decelerates

Extended radio sources - morphologies

_Fanaroff & Riley (1974) - FR 2 class:

- ▶ higher luminosity radio source $L_{178 \, MHz} \ge 2 \times 10^{32} \, erg/s/Hz$
- edge-bright (radio lobes with prominent hot spot)
- strong optical emission lines
- ▶ jet remains narrow and relativistic

FRI/FR2 transition - dichotomy

Transition appears at higher L_{radio} for optically more-luminous host galaxies (Owen & Ledlow 1994 etc)

- ▶ external cause: interaction with ambient medium (DeYoung '93; Perucho & Marti '07)
- ▶internal cause: difference in central engine or jet composition (Baum et al. '95, G&C'01)

Does FRI/FR2 transition depend on black hole spin?

Idea: use kinetic jet power and BH mass estimates to infer BH spin

$$L_{BZ} \propto a^2 M_{BH}^2 B^2$$

• SAMPLE I:

analysis suggests difference in spin with FR I: $a \approx (0.01-0.4)$, FR 2: $a \approx (0.2-1)$

- "...for AGN with powerful large-scale outflows, beam power is directly related to black hole spin." (Daly 2011, MNRAS, arXiv:1103.0940)
- but: no difference in accretion considered...

• SAMPLE 2:

no difference in spin (a>0.9), but in accretion rate (FR 2: SS \rightarrow FR 1:ADAF)

▶ "Our results suggest that the BHs in FR Is should be rapidly spinning with $j \ge 0.9...$ " (Wu et al. 2011, ApJ, arXiv:1104.3235) no clear case yet

• Fender+ (MNRAS 2010):

"No evidence for black hole spin powering of jets in X-ray binaries"

AGN unification - similar central engine

"...the wide variety of AGN phenomena we see is due to a combination of real differences in a small number of physical parameters (like luminosity) coupled with *apparent* differences which are due to observer-dependent parameters (like orientation)." (B. Peterson, AGN, CUP 1997)

TYPICAL PHYSICAL PROPERTIES:

Black Hole

 $m \sim 10^8 M_{sun}$

Accretion disk (SS):

 $r \sim (10^{-2} - 10^{-3}) pc$

 $n \sim 10^{14} \, r^{-3/2} \, cm^{-3}$

 $kT \sim 30 \text{ eV } r^{-3/4}$

 $v \sim 0.4 c$ (at inner edge)

Broad line region (BLR):

 $r \sim 0.01-0.1 pc$

 $n \sim 10^{10}$ cm⁻³ (forbidden lines collisionally suppressed)

 $v \sim (10^3 - 10^4) \text{ km/s}$

T~104 K

Torus:

r ~ I up to several 10 pc

 $n \sim 10^3 - 10^6 \text{ cm}^{-3}$

 $T \sim cold$

Narrow Line region (NLR):

 $r \sim 100-1000 pc$

 $n \sim 10^3 - 10^5 \text{ cm}^{-3}$

 $v \sim a$ few 100 km/s

 $T \sim 10^4 \text{ K}$

A "possible", simple unification scheme

Orientation / radio loudness	viewing from the side	viewing face-on	
Radio-quiet	Seyfert 2	Seyfert I	
Radio-loud	FR I NLRG FR 2	BL Lac BLRG FSRQ	

[&]quot;Everything should be made as simple as possible, but not simpler." -Albert **Einstein**

Doppler boosting of emission

If emitting region moves relativistically, observed features appear boosted:

Doppler factor:
$$D = \frac{1}{\Gamma_b (1 - \beta_b \cos \theta)}$$

- ▶ spectral flux enhancement: $S(v) = D^3 S'(v')$
- energy/frequency shift: v = D v'
- ▶ time variability: $\Delta t = \Delta t' / D$
- **)** ...

FR I radio galaxies as misaligned BL Lacs?

SED of FR I Cen A can be well fitted with one-zone BL Lac-type SSC assuming small Doppler factor/large inclination (Chiaberge et al. 2001)

Table 1. Model parameters for the SED of Centaurus A

 $L_{\rm inj}$ is the injected power (in particles of energy equal to $\gamma m_{\rm e} c^2$).

HE and VHE gamma-ray emission

May expect to see some FR I-type radio galaxies in the high-energy domain (0.1-10 GeV) with FERMI, but not much in TeV, if emission is (misaligned) BL Lac-type.

Fermi-LAT detection of misaligned radio galaxies

out of > 700 AGN:

Name	Туре	Distance	MeV/GeV detection	VHE	Notes
Cen A	FR I	3.7 Mpc	EGRET, LAT 2010	✓	Fermi: Core/lobes
M87	FR I	I6 Мрс	LAT 2009	✓	TeV Id-variability
Fornax A	FR I	18 Мрс	LAT 2011 preliminary		preliminary/Cheung
Cen B	FR I	56 Мрс	LAT 2011 preliminary		preliminary/Cheung
3C84	FR I	75 Mpc	LAT 2009	(*!)*	jet precession; LAT days-variability***
IC 310	FRI head-tail	80 Mpc	LAT 2010	/ **	Neronov et al.'10; VHE yr-variability
NGC 6251	FR I	106 Mpc	EGRET, LAT 2010		
3C78	FR I	124 Mpc	LAT 2010		
3C120	FR I	I42 Mpc	LAT 2010		BLRG
3C111	FR 2	213 Mpc	EGRET, LAT 2010		BLRG
PKS 0943-76	FR 2	1360 Mpc	LAT 2010		
•••••					

Abdo et al. 2010, ApJ 720; Cheung 2011 (talk @ Fermi Sympos.); Neronov et al. 2010, A&A 519

^{*} Atel #2916 (MAGIC): detected above 100 GeV with 5 σ, steep spectrum, no signal above 400 GeV;

^{**} MAGIC Collab. 2010, hard spectrum up to 7 TeV (photon index ~2);

^{***} Brown & Adams 2011, MNRAS 413: in two yr LAT data

Radio galaxies II

_Zoom-in I: VHE gamma-ray production in FR I

- ▶ VHE emission from non-blazar prototype M87
- particle acceleration and γ-ray production in BH environment
- absorption and escape of TeV γ-rays

Zoom-in I: M87 - general properties

_M87: FR I, non-blazar prototype:

- giant elliptical galaxy (Virgo cluster)
- ▶ distance ~16 Mpc
- ▶ BH mass (from gas rotation):

$$M_{BH} \sim (3-6) \times 10^9 M_{sun}$$

- ▶ under-luminous $L_{bol} \sim 10^{42} \text{ erg/s} << L_{Edd}$
- one-sided, kpc-scale jet
- \blacktriangleright jet inclination $i \sim 20^{\circ}$,
 - \rightarrow modest Doppler beaming (D \sim 2)

Marshall et al. 2002

Zoom-in I: M87 - radio image at different scales

M87 @ very-high energies

_VHE γ-ray history:

M87 is the first non-blazar extragalactic source known to emit VHE γ-rays

- Ist detection (> 4σ) by **HEGRA** in 1998/99
- ▶ **H.E.S.S.**: confirmation (2003-05),VHE variability (long/yrand short/2d-term) hard spectrum in 2005 (Γ ~2.2)
- **VERITAS**: 6σ detection in 2007, no significant short time variability, hard spectrum
- MAGIC: 8σ in one night (Jan 08), days-scale variability
- **)**

Aharonian et al. 06; Acciari et al. (VERITAS)'08; Albert et al. (MAGIC)'08...

Right Ascension (hours)

M87 @ very-high energies

_VHE (H.E.S.S.) findings during 2005 high state:

- spectrum extends beyond 10 TeV
- ▶ hard VHE spectrum (photon index -2.2)
- ▶ isotropic L(>730 GeV) $\approx 5 \times 10^{40}$ erg/s
- evidence for rapid variability (timescale I-2 days)

M87 @ high energies

_Fermi (2008/2009) detection of M87:

- ▶ detected up to 30 GeV in 10 months data
- ▶ power-law photon index comparable to VHE (-2.2)
- ▶ isotropic L(>100 MeV) $\approx 10^{41}$ erg/s
- ▶ detected light curve (10d bins) consistent with no variability

Origin of TeV y-rays from M87?

_Additional component at TeV energies?

- ▶ Fermi extrapolation cannot explain high TeV flux (but perhaps normalization errors + variability)
- ▶ one-zone SSC (radio-GeV) cannot fit TeV high state (also other "conventional" misaligned models)

▶ radio-TeV ('08) link supports close BH origin (Note: day-variability implies compact zone)

Interlude: On the origin of TeV y-rays from M87

_Challenges to "conventional" jet models without strong Doppler boosting:

- large-scale jet (d >> I pc):
 - Knot A (d ~I kpc, EC starlight) (Stawarz+ '03)
 => excluded by variability
 - ► HST-1 (d ~ 100 pc, SSC/EC) (Stawarz+ '06)
 => unlikely (size + TeV variability; cooling break at ~10¹⁵ Hz, anti-correlation of HST-1 X-ray and VHE light curves)
- innermost part of jet (d ~ sub-pc):
 - homogeneous SSC (synchrotron peak in optical)
 ⇒ Compton peak << I TeV (cf. Lenain+ '08)
 - ▶ proton synchrotron (Reimer+ '03)
 ⇒ no hard TeV spectra, intrinsic cut-off at 0.3 TeV
 - ▶ decelerating flow/UC scattering (Georganopoulos+ '05)
 ⇒ cannot explain d-variability and hard TeV spectra
 - Spine/shear interplay (EC) (Tavecchio & Ghisellini '08)
 ⇒ no hard TeV spectrum (due to γγ-absorption)

VLBA @ 2cm: Kovalev+ 07

Origin of TeV y-rays from M87

BH-magnetosphere models as alternative:

(Neronov & Aharonian '07; R. & Aharonian '08; Beskin '09; Levinson & R. '11)

- ▶ Idea: additional contribution from close to BH
 (~ a few r_g)
 - \rightarrow variability $t_{var} \sim a$ few $(r_g/c) > 0.2$ d
- ▶ Support: radio and TeV connection
- ▶ Requires 1: VHE electrons ($\gamma_e \ge 10^7$) for IC
- ▶ Requires II: little γγ-absorption below 10 TeV

Particle acceleration in rotating BH magnetospheres

Example I - Gap-type particle acceleration in M87

(e.g., Levinson'00; Neronov & Aharonian'07; Levinson & R.'11)

- similar to pulsars
- rotating **B** induces $\mathbf{E} = -(\mathbf{\Omega} \times \mathbf{r}) \times \mathbf{B}/c$
- ▶ **E** is supported by local charge density $\rho_{GJ} = \nabla \cdot \mathbf{E}/4\pi$ (Poisson)
- ▶ if $\rho < \rho_{GJ}$, we may have unscreened E_{II} components \Rightarrow particle acceleration
- electrons $\gamma_e \sim 10^8$ - 10^{10} possible (given curvature+IC)
- ▶ proton energy < 5×10^{19} eV due to curvature losses or max. potential drop ~ 3×10^{19} a M₉ B₃ (h/r_g)² Volts

Potential drawback:

- ▶ AGN environs tend to be plasma-rich enough electric charges?
 - \Rightarrow pair production in hot ADAF: $n_e/n_{Gl} = 10^{13}$ (accretion rate)^{3.5} (Levinson & R'II)
- ▶ E_{II} is screened, acceleration suppressed (but cf. Komissarov'04)

Particle acceleration in rotating BH magnetospheres

_Example II - Centrifugal particle acceleration in M87

(e.g., Gangadhara & Lesch '97; R & Mannheim '00; Osmanov+ '07, R & Aharonian '08)

- ▶ plasma-rich environment, E_{II} screened, no gap-type acceleration
- ▶ account for inertial (centrifugal) effects close to light surface $r_L=c/\Omega$
- plasma corotation:
 - → rotating B induces E
 - \Rightarrow **E** x **B** drift velocity $\mathbf{v}_D = \mathbf{c} (\mathbf{E} \times \mathbf{B})/\mathbf{B}^2 = \Omega \mathbf{r} \mathbf{e}_{\theta}$
- ▶ radial motion:
 - → Hamiltonian is constant of motion

$$H = \gamma \ m_0 c^2 (1 - r^2/r_L^2) = const.$$

- \rightarrow for electrons $\gamma_e \sim 5 \times 10^7$ possible (given IC losses)
- \rightarrow proton energy limited by corotation < 10^{17} eV

Potential drawback:

 \blacktriangleright requires B_{Φ}/B_{p} to be small for efficient acceleration

How to produce VHE gamma-rays - Example I

VHE electrons

IC of ADAF soft photons + elm cascade

Application to M87: (cf. Neronov & Aharonian'07; Levinson & R. '11)

- ▶ RIAF/ADAF soft photon field
- ▶ primary electron injection via pair-production in hot RIAF/ADAF
- gap-type acceleration of primary electrons up to $\gamma_e \sim 10^{10}$
- ▶ direct IC (KN regime) contribution (attenuated above 10 TeV)
- direct curvature contribution below I TeV
- ▶ elm cascade (initiated by absorption in ambient soft photon field)

Inverse Compton scattering

How to produce VHE gamma-rays - Example II

Centrifugal particle acceleration

IC scattering of ADAF photons

(R. & Aharonian'08a,b)

- electron max energies: $\gamma_{\text{max,e}} \sim 5 \times 10^7$ (via balance by IC cooling)
- ▶ IC (Thomson) off ADAF photons gives VHE emission up to $\sim 5 (\gamma/10^7)$ TeV
- ▶ at highest energies sensitive to seed photon spectrum, i.e. disk conditions.

ADAF spectrum: Synchrotron + Comptonized parts (e.g., Mahadevan '97)

Resultant TeV spectrum for Bondi accretion rate

Can TeV gamma-rays escape unabsorbed?

Case I: Standard (SS) disk (thermal black body)

- ▶ $L_{bol} \sim 10^{42} \text{ erg/s} \geq L_{disk} \Rightarrow \text{accretion rate} \sim 10^{-6} \text{ m}_{Edd}$
- ▶ Temperature profile $T(r) \sim 7 \times 10^3 (r_s/r)^{3/4} K$

- ▶ Disk emission is maximized at frequency $v \sim 3 \text{ kT/h} \sim 4 \times 10^{14} \text{ Hz} \Leftrightarrow 2 \text{ eV}$
- ▶ Remember: Photon-photon interaction $\varepsilon_t \sim (1 \text{ TeV/}\varepsilon_Y) \text{ eV}$
- \blacktriangleright Disk emission dominated by radius from r \sim r_s
- ▶ Implies huge target number density \Rightarrow optical depth $\tau_{YY} \sim n_t \sigma_{YY} r_s >> 1$

Can TeV gamma-rays escape unabsorbed?

Case II: RIAF/ADAF disk with α Bondi rate (Levinson & R. 2011, cf. also Li+ 09)

- consistent with nuclear SED
- ▶ Calculate IR target field due to Compton scattering of synchrotron photon:
 - once or twice scattered: $L_c \propto L_s \times \{A + T, A^2 + T^2\}$ with $T \sim n_e \sigma_T r << 1$
 - $ightharpoonup au_{YY} approx L_c approx (accretion rate)^{2-4} approx 0.2 5 for α Bondi$
 - \blacktriangleright escape of \leq 10 TeV photons possible for gap models, and expected for centrifugal models escape possible
 - optical depth highly sensitive on accretion rate!

VHE emission from nearby radio galaxies

_Zoom-in I conclusion:

In selected, nearby, low-luminous, non-aligned AGN (e.g., M87, Cen A), VHE processes close to black hole may become observable and allow fundamental diagnosis of its environment.

Radio galaxies III

_Zoom-in II: UHE cosmic-ray production in FR I

- ▶ the case of Cen A
- cosmic-ray acceleration sites and efficiencies

Cen A as a possible UHECR source?

\bigstar _Cen A is a HE & VHE γ -ray source !

★ _Is Cen A an extreme UHECR source?

- observational motivation:
 - apparent clustering of arrival directions of UHECR above 57EeV - Cen A (still) has the largest excess relative to isotropic expectations (PAO: Science 318 [2007]; APh 34 [2010])

- Does it seem likely that particles might get accelerated to extreme UHECR energies in Cen A?
- Given what we (seem to) know about Cen A, do existing mechanisms operate efficiently enough?

Cen A - general properties

_Cen A: nearest FR I radio galaxy:

- ▶ distance ~ 3.4 Mpc
- ▶ central BH mass $M_{BH} \sim (0.5\text{-}1) \times 10^8 M_{sun}$
- ▶ under-luminous $L_{bol} < 10^{43}$ erg/s (quasar SED)
- ▶ jet velocity ~ 0.5c
- ▶ jet inclination (VLBI) > 50°, modest beaming!
- complex radio morphology (jets, lobes etc)
- hybrid disk configuration (no bbb)

linear scale ~ 15 kpc

Credit: CSIRO/ATNF; ATCA;ASTRON; Parkes; MPIfR; ESO/WFI/AAO

(UKST); MPIfR/ESO/APEX; NASA/CXC/CfA; see also Feain+ "11

Cen A as nearest AGN - radio structure

Cen A as possible UHECR source?

Efficient acceleration of **protons** close to black hole - **unlikely**

- rotating BH with $J_{BH} = a GM_{BH}^2/c$ embedded in magnetic field (BZ)
 - **B** rotates with angular velocity of horizon (membrane paradigm)
 - induced electric field E ~ a B
 - \Rightarrow available potential $\Phi \sim r_g E$
 - maximum achievable CR energy:

$$E_{\text{max}} \sim 3 \times 10^{19} \text{ a Z M}_{\text{BH,8}} B_{0,4} (h/r_g)^2 \text{ eV}$$

- (I) Cen A is not massive enough But:
 - (2) Ordered B_0 < equipartition magnetic field < 10^4 G,
 - (3) Vacuum breakdown ($h < r_g$) is to be expected (Levinson & R II)
 - ?UHECR from quasar remnants? (4) Curvature radiation would otherwise suppress (Levinson '00)
 - (5) Tendency for low spin (a ≤ 0.5) in FR I (Daly '11)

Cen A as possible UHECR source?

_Efficient acceleration of **protons** by shocks-in-jet - **unlikely**

▶ non-relativistic shock acceleration timescale:

$$t_{\rm acc} \sim \frac{E}{(dE/dt)} \sim \left(\frac{E}{dE}\right) t_c \sim r_{\rm gyro} \left(\frac{c}{u_s^2}\right)$$

▶ maximum energy by balance with cross-field diffusion/shock lifetime:

$$E_{max} \sim Z e B r_t \beta_s \le 2 \times 10^{19} Z B_{0,4} \beta_{s,0.1} eV$$

(using B(r) ~ B₀ r_s/r with B_{0,4} = 4 B₀/I0⁴G and $\beta_{s,0.1}$ = β_s /0.1 c)

- **But:** (I) expect rather low *internal* shock speeds
 - → low overall bulk flow ≤ 0.5c (Tingay+ 01; Hardcastle+ 03)
 - (2) supported by nuclear SED
 - ⇒ synchrotron peak (independent of B): $V_s \sim 2 \times 10^{19} (\beta_s/0.1)^2 Hz$
 - (3) FR I energetics, see following

UHECR from Cen A?

Constraints from FR I jet power requirements:

- ▶ Magnetic flux carried by the jet: $L_m \sim \pi r^2 (B_p^2/8\pi) u_z$
 - from shock acceleration: express B in terms of E_{max} , i.e., $B \propto E_{max} / Z \beta_s$
 - minimum jet power $L_i \sim 2 L_m$

$$L_j \sim 10^{44} \left(\frac{u_z}{0.5c}\right) \left(\frac{0.1}{\beta_s}\right)^2 \left(\frac{E_{\text{max}}}{10^{19} eV}\right)^2 \frac{1}{Z^2} \text{ erg/s}$$

Cen A as possible UHECR source? (R & Aharonian'09)

_Efficient 2nd order Fermi acceleration in outer lobes? - unlikely?

▶ acceleration timescale:

$$t_{\rm acc} \sim \frac{E}{(dE/dt)} \sim \left(\frac{E}{dE}\right) t_s \sim \left(\frac{c}{v_A}\right)^2 \frac{\lambda}{c}$$

▶ Maximum when acceleration = escape (cross-field):

 $E_{\text{max}} \sim 2 \times 10^{19} \text{ Z (v_A/0.1c)} (R/100 \text{ kpc}) (B/10^{-6}\text{G}) \text{ eV}$

may account for PAO events if (!) $v_A > 0.3$ c (Hardcastle+ 09)

linear scale ~ 500 kpc

- **But:** (I) If observed soft X-ray emission is indeed thermal in origin (Isobe+ 01; Marshall & Clark '81)
 - \rightarrow thermal plasma density of n_{th}~ (10⁻⁵ -10⁻⁴) cm⁻³
 - \Rightarrow Alfven speed \sim c/300 << c (cf. also O'Sullivan+ 09)
 - (2) Faraday RMs suggest densities ~ n_{th} (Feain+ 09)

Cen A as possible UHECR source?

_ Efficient shear acceleration along kpc-jet - perhaps possible

Shear acceleration - recap:

(Jokipii & Morfill '90; R. & Duffy '04, '06)

- Internal jet stratification (e.g., limb-brightening, polarization, higher energy emission closer to axis)
- Example: one-dim. gradual shear flow with frozen-in scattering centers:

$$\vec{u} = u_z(x) \ \vec{e}_z$$

→ like 2nd Fermi, stochastic process with average energy gain:

$$\frac{\langle \Delta \epsilon \rangle}{\epsilon_1} \propto \left(\frac{u}{c}\right)^2 = \left(\frac{\partial u_z}{\partial x}\right)^2 \lambda^2$$

with characteristic effective velocity:

$$u = \left(\frac{\partial u_z}{\partial x}\right) \lambda$$

"2nd order Fermi-type"

 \rightarrow produces power-law n(p) α p^{-(1+ α)}

Cen A as possible UHECR source?

On shear acceleration along kpc-jet in Cen A:

- ▶ Advantage: "distributed" mechanism operating along jet
- ▶ "Disadvantage": needs high energy seeds $t_{acc} \propto [(\partial u/\partial r)^2 \lambda]^{-1}$:

$$t_{acc,shear} < t_{adv}$$
 possible for $\gamma_p \sim 5 \times 10^9$ (using $\Delta r \sim r_j/2$, $\Delta v_z \sim 0.5c$)

▶ **Spectral change** possible due to operation of new mechanisms!

UHECR from nearby FR I radio galaxies

Zoom in II - conclusion:

Cen A as possible UHECR source

- observationally "motivated", theoretically "possible":
 - if protonic via shear acceleration along kpc jet
 - if heavier possibly also via BZ and shocks
 - spectral changes might be partly due to operation of different mechanisms
 - composition heavier towards highest end?

(cf. Abraham et al. '10; Taylor et al. '11)

THANK YOU!

Reading/recommendations:

- B.M. Peterson: An introduction to active galactic nuclei, CUP 1997 (AGN phenomenology)
- A. K. Kembhavi; Jayant V. Narlikar: Quasars and Active Galactic Nuclei, CUP 1999 (FRI/II dichotomy etc)
- C.M. Urry & P. Padovani 1995: Unified schemes for radio-loud AGN, PASP 107, 803 (AGN unification)
- R.Antonucci 2011: Thermal and Nonthermal Radio Galaxies, ARA&A (arXiv:1101.0837)
- F.M. Rieger 2011: Non-thermal processes in black-hole-magnetospheres, IJMPD (arXiv:1107.2119)